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3 About AQUACROSS 

About AQUACROSS  

Knowledge, Assessment, and Management for AQUAtic Biodiversity and Ecosystem 

Services aCROSS EU policies (AQUACROSS) aims to support EU efforts to protect 

aquatic biodiversity and ensure the provision of aquatic ecosystem services. Funded 

by Europe's Horizon 2020 research programme, AQUACROSS seeks to advance 

knowledge and application of ecosystem-based management (EBM) for aquatic 

ecosystems to support the timely achievement of the EU 2020 Biodiversity Strategy 

targets. 

Aquatic ecosystems are rich in biodiversity and home to a diverse array of species 

and habitats, providing numerous economic and societal benefits to Europe. Many of 

these valuable ecosystems are at risk of being irreversibly damaged by human 

activities and pressures, including pollution, contamination, invasive species, 

overfishing and climate change. These pressures threaten the sustainability of these 

ecosystems, their provision of ecosystem services and ultimately human well-being. 

AQUACROSS responds to pressing societal and economic needs, tackling policy 

challenges from an integrated perspective and adding value to the use of available 

knowledge. Through advancing science and knowledge; connecting science, policy 

and business; and supporting the achievement of EU and international biodiversity 

targets, AQUACROSS aims to improve EBM of aquatic ecosystems across Europe.  

The project consortium is made up of sixteen partners from across Europe and led 

by Ecologic Institute in Berlin, Germany.  
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4 Foreword 

Foreword 

Parmenides of Elea, the pre-Socratic Greek philosopher, explained in his poem On Nature two 

views of reality. In the so-called ‘way of truth’, he described how reality is one, change is 

impossible, and existence is uniform, timeless, necessary, and invariable. In the so-called 

‘way of opinion’, Parmenides explained the world of appearances, in which one may be led to 

conceptions that are either false or deceitful. If avoiding self-indulgence, any reader may 

have noticed that when ignoring what to say, almost everyone would opine. And there is 

nothing wrong in making judgements (rather the opposite); the problem emerges when 

opinions are presented as scientific evidence.  

Assessing is about evaluating, making (analytical) judgements or statements… it is not just 

about measuring, describing or informing. Hence, any Assessment Framework (hereafter AF) 

is a means to an end. Within AQUACROSS, the aim is to propose new ways of governing our 

relationship with nature (and not just with aquatic ecosystems, given the interrelationships 

with terrestrial ecosystems). 

For that purpose, it is of paramount importance to understand processes and causes, rather 

than just describing and measuring states. The AF is a critical toolbox to that aim, grounded 

on conceptual considerations included in D3.1 (AQUACROSS Innovative Concept Note, Gómez 

et al., 2016).  

The AQUACROSS AF deals with at least two main issues: what to assess (addressed in Part I); 

i.e where we are and where we could go through ecosystem-based management (EBM) 

approaches, against baseline, and how to assess it (see Part II). Unlike common wisdom, the 

emphasis for such an endeavour should not be on indicators. These are key and instrumental 

for the assessment (as will be reflected in Deliverables 4.1 (Pletterbauer et al., 2016) and 5.1 

(Nogueira et al., 2016), developed in close coordination with this deliverable) but by no 

means are indicators the assessment itself.  

For these purposes, as above, we build on the best available frameworks (see Section 1.2) but 

also harness state-of-the-art scientific knowledge. Building on other AFs does not mean at 

all assessing other frameworks. This sort of ‘endogamic’ exercise has actually been avoided 

as part of Deliverable 3.2 (D3.2). AQUACROSS is far from being about refining a tool whilst 

ignoring its actual use, but rather about shedding light on what is actually to be assessed and 

maximising the AF’s practical usefulness to meet a number of objectives.  

Needless to say that in order to build a new framework, to add value as part of this project, to 

innovate, the different communities of knowledge represented in the consortium have had to 

leave their “comfort zones” (both in terms of ecosystem-type and in relation to AFs they were 

previously familiar with). This effort, indeed, does require recognising the strengths of 

previous efforts but also their constraints, so as to integrate the former and overcome the 

latter.  

http://aquacross.eu/sites/default/files/D3.1%20Innovative%20Concept.pdf


 

5 Foreword 

Information systems, metrics, and descriptive efforts will be relevant but what is actually 

required for this AF is a more analytical view, on the basis of the best available scientific 

knowledge. D3.2 provides a comprehensive overview of these analytical approaches, 

following a logical sequence for the assessment itself.  

But, what is the best available knowledge? A pervasive idea throughout the AF (and the 

project, as reflected for instance in the project’s Science-Policy-Business Think Tank 

deliberations) is that we should find anytime the best knowledge available, no matter where it 

is. It is very likely that for ecological and social systems dynamics this will stem from science. 

Rather, for perceptions it may definitely come from stakeholders and for institutional barriers 

this is meant to come from experts (not necessarily scientists or stakeholders). Balancing this 

is a complex task and very much one that is at the core of what is to be done in AQUACROSS.  

No assessment can be made in the absence of assessment criteria (see Section 2.3). On one 

side, evaluating baselines under well-defined criteria is key to identify threats to resilience, 

sustainability challenges, improvement opportunities, the suitability of the institutional set 

ups in place and the challenges to move away from unsustainable paths as well as to assess 

and eventually redefine policy targets regarding ecosystems and biodiversity (see Section 

2.2). On the other side, assessing the outcomes of EBM approaches against baseline levels of 

biodiversity and ecosystem services (ESS) delivery is not something that can be tackled unless 

some explicit criteria are clearly defined. 

Since AQUACROSS is about moving away from common practice, this AF has avoided, as 

much as possible, designing pieces even if we were aware they would not fit with each other, 

as well as driving the assessment towards either formal (i.e., compliance with EU Directives) 

or implied objectives (i.e., conservation of species and natural conditions). Conventional 

conservation efforts and compliance checking are full of the best intentions; this living 

document (D3.2), on the other hand, aims at making things happen. In accordance with the 

Description of Action (Task 3.2) the AF will now be tested in the different case studies and 

further developed as other work packages (WP1-WP8) evolve, leading to the final AF: D.3.3. 

One may actually argue that subjective preferences and judgments are also part of assessing. 

As a matter of fact, perceptions are drivers of individual and collective actions, and are 

critical for both baseline and new policy scenarios (as in Section 2.1). Moreover, they are not 

just an input, if a critical one, but an opportunity. Projects like AQUACROSS, its scenarios and 

stakeholder engagement processes, could do a lot to change perceptions; that is to say, to 

enhance science-based perceptions, to make expectations from stakeholders compatible to 

each other, to enhance cooperation and policy coordination, to align incentives, etc. 

What is assessed, as part of this analytical framework, is the new policy response (EBM 

approaches) against properly defined baselines. These baselines are a commonly agreed 

upon and shared representation of current and future problems, challenges and 

opportunities. These scenarios are necessarily co-built with stakeholders. An exercise of this 

kind should necessarily lead to an increased demand of accurate scientific answers to 
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relevant problems and may provide the basis for a common perception of the problem and its 

drivers, which in turn is a critical requirement for cooperation and collective action.  

It is important to note that baseline and policy scenarios are the connections between 

analysis and policy, both of which crosscut throughout the AF. All models are available to 

assess and provide analytical linkages (as above, to explain rather than just to describe), then 

feed into the comprehensive assessment and scenarios of the system. 

Needless to say that the discussion about policy objectives (see Section 2.2) entails making 

decisions about what should be part of the baseline and what should be part of the 

AQUACROSS policy scenario. Such a decision is not part of the definition of this AF, though, 

but rather of the actual assessment, to be developed in the different case studies. 
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1   Part I: What To Assess 

Lead authors: Gonzalo Delacámara (IMDEA), Carlos M. Gómez (UAH & IMDEA) 

Main contributors: Manuel Lago, Benjamin Boteler, Josselin Rouillard (ECOLOGIC); Florian Pletterbauer (BOKU); 
António Nogueira and Ana Lillebø (UAVR); Alejandro Iglesias-Campos (IOC-UNESCO), Simone D. Langhans (FVB-
IGB); GerJan Piet (WUR); Nele Schuwirth, Peter Reichert (EAWAG); Tim O´Higgins (UCC) 

1.1 Introduction 

1.1.1  The AQUACROSS Assessment Framework as an integrative 

and cooperative effort 

AQUACROSS Assessment Framework (AF) combines scientific analyses to develop an 

integrative understanding on drivers, pressures, state of aquatic ecosystems, ecosystem 

services (ESS) and abiotic processes of ecosystems, and impacts on those ecosystems –

ultimately on their biological diversity and ecosystem service delivery.   

The emphasis, as in the Description of Action (DoA), is not on each one of those individual 

elements as such but rather on causal links between each one of them. It is not individual 

clogs of that logical chain the project focuses on, but on the complex linkages between each 

of them, following the AQUACROSS Concept (Deliverable 3.1: Gómez et al., 2016). 

Literature shows that causal relationships are characterised by their strength (Yeung and 

Griffiths, 2015), consistency (Norton et al., 2014), specificity (Woodward, 2010), and 

temporality (Norton et al., op. cit.), but there seems to be consensus that only the latter is 

actually significant (Worm et al., 2006). The discussion about causality, though, alike any 

statement on association or correlation, will definitely emerge throughout the project when 

progressing from the design of this AF to its actual implementation in the different work 

packages and case studies. As below, this will be reflected in D3.3, aimed at providing an 

updated and upgraded version of the AF towards the end of the project.  

Hence, the AF is the combination of those scientific analyses, stemming from different 

disciplines of knowledge and integrative efforts. This analytical framework should enable the 

practical application of EBM approaches in aquatic ecosystems through relevant models and 

guidance protocols, using adequate sets of data and indicators.  

The AF will be tested, to different extents, in eight case studies and applied to a suite of 

innovative and applicable management solutions for aquatic ecosystems that serve to best 

enhance, through the conservation of biodiversity, the social-ecological resilience of the 

ecosystem and its capacity to deliver services to society. The project thus follows an ‘idea to 

application’ approach building on existing knowledge and generating innovative responses to 

policy coordination challenges by developing integrative tools and concepts with relevant 

stakeholders. Yet, the emphasis of this document, by definition, is not on the application of 
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the AF but rather on its design – ulterior work in the project will stress on the actual 

implementation of these analytical elements. 

Integration (as well as inter- and trans-disciplinary research) is at the core of the 

AQUACROSS concept, thus making cooperative efforts not a choice but a logical need. The 

AQUACROSS AF is the outcome of these efforts, integrating across all aquatic ecosystems 

(freshwater, coastal, and marine) and mobilising expertise and knowlesge from biologists, 

ecologists, chemists, eco-toxicologists, hydrologists, oceanographers, environmental 

scientists, physicists, economists, IT-experts, and other social scientists. The resulting AF 

can be said to be integrative in different ways since it addresses: 

  The harmonisation and streamlining of environmental policies under the overall 

framework of the EU 2020 Biodiversity Strategy and other international biodiversity 

targets. 

 The coordination of policies in transitional and coastal waters, where different policy 

directives apply. 

 The integration of relevant information for the assessment of aquatic ecosystems and 

their abiotic outputs across the freshwater-saltwater continuum. 

 Social-ecological systems (SES) in a holistic way, as complex adaptive systems (CAS) that 

co-evolve, thereby avoiding traditional silos and biased approaches. 

Central to AQUACROSS is the notion of EBM. EBM sets the foundations for the development of 

effective and widely applicable management concepts and practices for aquatic ecosystems. 

The EBM concept is concerned with ensuring that management decisions do not adversely 

affect ecosystem functions (EF) and productivity, so that the provisioning of aquatic ESS (and 

subsequent economic benefits) can be sustained in the long term. EBM is also relevant to 

maintain and restore the connections in SES, as well as a way to address uncertainty and 

variability in dynamic SES in an effort to embrace change, learn from experience and adapt 

policies throughout the management process.  

This document presents a common framework for the assessment of aquatic ecosystems that 

is needed for the development of integrated management concepts. This framework is in line 

with existing assessment initiatives (see Section 1.2) and integrates ecological and socio-

economic aspects in one analytical approach. Moreover, the AF considers relevant aspects for 

management of aquatic ecosystems specifically in relation to resilience and uncertainty. Yet, 

in addition to the theoretical underpinnings of the analysis, the AF also reflects a joint 

understanding of the key impacts on aquatic ecosystems between scientists, policy-makers 

and stakeholders and among ecosystem types (freshwater, coastal, marine), definitely 

benefiting from insights from a stakeholder workshop held in Berlin (March 2016) and the 

first AQUACROSS Forum held in Alcalá de Henares (Madrid, June 2016).  

The AF helps facilitate the integration process of ulterior scientific work in the project’s work 

packages by identifying available models and information as well as further data needs. 

Finally, the framework highlights key areas or ‘nodes’ where indicators are essential for 



 

9 Introduction 

capturing the state and dynamics of biodiversity and ESS, as well as the adaptive capacity and 

resilience of SES. The framework, as a living document, facilitates synergies and identifies 

critical linkages between the different elements of the project: the analysis of drivers and 

pressures; the assessment of causalities between biodiversity, and EF and ESS, as well as their 

abiotic components; the impact of drivers on the status and trends of biodiversity, EF and 

ESS; the development of indicators to capture all relevant social-ecological-economic 

dimensions at the case-study level and beyond; and the design and implementation of EBM 

approaches, as innovative responses to enhance the status of aquatic ecosystems and achieve 

the relevant policy objectives at stake. 

As in Section 1.2, recent years have seen a vast number of research initiatives promoting a 

range of concepts, methods, and models that aim to support the achievement of EU and 

international biodiversity targets. By explicitly considering the full range of ecological and 

human interactions and processes necessary to sustain ecosystem structure and functioning, 

EBM has become a most promising approach (Tallis et al., 2010), encompassing a whole 

range of decision support systems. Within that context, EBM has permeated, to a different 

extent, scientific and policy practice related to the management of aquatic ecosystems (Nobre 

& Ferreira, 2009). 

While all those initiatives (including ongoing EU-funded research projects) provide a number 

of useful tools and products for decision-making, a major challenge remains in the 

establishment of an operational framework that links the assessment of biodiversity and 

ecosystem functions and services and their integration in public and private decision-making.  

1.1.2  AQUACROSS Assessment Framework as a living document 

The AQUACROSS AF (current Deliverable 3.2) has been developed as part of Task 3.2 of the 

project, building on Task 3.1 that led to Deliverable 3.1 (Gómez et al., 2016). Through 

further refining the concept and proposing potential methods and tools to be included into 

specific work-package research, where the AF will be tested in the different case studies, the 

AQUACROSS AF provides the foundations for applied research in the remainder of the project.  

Through integrating the assessment of causal relationships between ecosystem functions and 

services and biodiversity levels in aquatic ecosystems in the conventional DPSIR (Driver-

Pressure-State-Impact-Response) framework and overcoming some of its constraints, the 

AQUACROSS AF provides elements to assess, in sequential order both from a static and 

dynamic perspective: 

 Drivers, pressures and multiple stressors (see Section 2.4), to better understand the 

sensitivity and dynamics of ESS to environmental change (and specifically biodiversity 

loss), as well as the environmental limits of ecosystems (i.e., threshold analysis). 

Behavioural models are reviewed in order to assess the implications of biodiversity loss 

and ESS delivery for human well-being. 
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 Understanding causalities, focusing on required elements for the quantification of the 

characteristics of biodiversity (from population to communities, habitat types, landscapes 

and seascapes) required for delivering ESS (see Section 2.5). 

 Ascertaining impacts and responses to enhance the meaningfulness of some economic 

variables (value, price, cost estimates) in co-decision processes; to assess the added 

value of ecosystem-based approaches able to recognise the role of multifunctional land 

management and landscape and seascape patterns on the delivery of aquatic ESS and to 

develop options to enhance biodiversity levels and maintain ecosystem integrity beyond 

protected areas; as well as to promote the uptake of business opportunities associated 

with the sustainable management of flows (and stocks) of ESS (see Section 2.1). 

Furthermore, the AF deals with several crosscutting issues: 

 Resilience thinking, critical in the definition of scenarios (see Section 2.1.7) but also in 

the design and implementation of responses, to deal with uncertainty and to respond to 

unexpected changes (as these systems are characterised by non-linear dynamics, 

complex interactions across scale, self-organisation, etc.), through enhancing diversity 

and redundancy (not only ecological but also in the social system) and diversity of 

knowledge and response options and to provide opportunities for learning (e.g., in 

stakeholder processes) and changing policy directions based on new insights. 

 Uncertainty linked to the assessment of information/data, and methods and tools 

required for creating scenarios of trends in drivers and pressures, causal links between 

biodiversity and ESS delivery, trade-offs between competing objectives, valuations, etc. 

(see Section 2.6.2). 

 Dealing with varying spatial and temporal scales related to ecosystem function, services 

and human benefits, to progress towards adaptive responses (see Section 2.6.3). 

 Data and metrics, reinforcing ongoing processes such as the reporting on SEBI 

(Streamlining European Biodiversity Indicators) and Aichi indicators, monitoring progress 

towards the EU2020 Biodiversity Strategy and other global targets, as well as ensuring 

coherence with other relevant policy processes (see Section 2.6.1).    

Unlike other projects, AQUACROSS aims at continuously reviewing and refining this AF 

towards Deliverable 3.3 (Final Assessment Framework). For that purpose, the development of 

the AQUACROSS AF and, therefore, the investigation into the specific elements for 

assessment, are mindful of the practical challenges to be faced in terms of applicability (e.g., 

linking policy and science in the three aquatic realms); making the most out of existing 

knowledge to enhance current EBM practice; ensuring relevance (i.e., through making EBM 

truly operational in the three realms and in an interconnected way); etc.  
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As above, the DPSIR framework is used as a reference rather than a mould. D3.1 included a 

discussion of the strengths and weaknesses of that widely used sequence:  

1 The DPSIR framework does not account for feedback processes.  

2 It focuses on a single pressure, thus neglecting multiple stressors.  

3 It does not allow for the discussion and assessment of trade-offs in terms of natural use, 

conservation, and enhancement. 

4 The sequence is limited (or very limited) in linking human welfare and ecosystem 

functions and services.  

5 It favours reactive and remedial responses rather than proactive and preemptive ones. 

1.1.3  How the AQUACROSS Assessment Framework links to the 

different elements of the project 

At the core of the project’s research efforts, the AQUACROSS AF is linked to all the different 

work packages of the project, thus providing direction to the work to be developed 

throughout the project. 

a) On one side, it is important to emphasise that stakeholder input is essential to support 

the deployment of the AF and its practical application in the different case studies. 

Innovation is about end-user driven research outcomes and therefore will be co-

developed with stakeholders.  

b) Through identifying policies affecting the achievement of EU and international biodiversity 

targets and assessing the operational demand for aquatic biodiversity, previous efforts of 

the project (as reflected in Deliverables 2.1 – Synergies and differences between 

biodiversity, nature, water and marine environment EU policies: lessons learnt for 

coordinated implementation and 2.2 – Review and analysis of policy data and information 

requirements and lessons learnt in the context of aquatic ecosystems; Rouillard et al., 

2016 and O’Higgins et al., 2016 respectively) feed into the development of the AF.  

c) The hands-on analysis of links between drivers and pressures builds on the AQUACROSS 

Architecture (see below) to develop in more detail the drivers and pressures dimensions 

of the AQUACROSS concept. The AF hence provides the basis for assessing the interaction 

between the full range of drivers and multiple interacting pressures and identifying 

sensitive indicators for the assessment of changes in ecosystem state for all aquatic 

realms (see Deliverable 4.1 – Guidance on indicators, methods and tools for the 

assessment of drivers and pressures on aquatic ecosystems, including results from the 

meta-analysis: Pletterbauer et al., 2016).  

d) The analysis of causalities between biodiversity, ecosystem functions and services builds 

on the AF. This includes the development of methods and indicators for the assessment 

of causal links between diversity and aquatic ecosystem functions and services (see 

Deliverable 5.1 – Guidance on methods and tools for the assessment of causal flow 

http://aquacross.eu/content/deliverable-21-synergies-and-differences-between-biodiversity-nature-water-and-marine
http://aquacross.eu/content/deliverable-22-review-and-analysis-policy-data-information-requirements-and-lessons-learnt
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indicators between biodiversity, ecosystem functions and ecosystem services in the 

aquatic environment: Nogueira et al., 2016).  

e) The AQUACROSS’ Information Platform (IP) (forthcoming Deliverable 6.2 – Development of 

the Information Platform) is based on results, data compilation and assessments 

(including policy requirements and end-user’s needs) that stem, among others, from the 

practical application of the AF. 

f) Building on the AF, the research consortium will apply different modelling approaches to 

evaluate projected changes of drivers and pressures according to (participatory) scenarios 

across the different aquatic realms (forthcoming Deliverable 7.1 – Guidance on methods 

and tools for the assessment of projected impacts of drivers of change on biodiversity, 

ecosystems functions and aquatic ecosystems service delivery; teaching modules for the 

individual modelling approaches). This includes the use of probabilistic networks, species 

distribution modelling, social-ecological modelling, etc. and the development of guidance 

for implementation of the case studies to ensure consistent modelling across different 

realms. 
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1.2 Building on (and overcoming) previous 

assessment frameworks 

Over the last few decades, a number of relevant AFs have been developed. Most of them 

formally aim at enhancing the understanding of the linkages operating in natural and social 

systems, and between both the demand and supply of ESS and abiotic components of 

ecosystems.  

AQUACROSS’ concept factored in their relevant elements to design the AQUACROSS AF. The 

concept (Gómez et al., 2016) largely acknowledges their strengths and limitations regarding 

its applicability in the three aquatic realms, going beyond to include dimensions that make 

them operational, such as multiple scales, a good science-policy-business interface and 

resilience thinking principles.  

Table 1 summarises existing frameworks, focusing on what is assessed in each one, to draw 

a wide picture of relevant elements and to highlight those that might be useful to 

AQUACROSS: 

 How are drivers of ecosystem change linked to social and economic processes? 

 How are adaptive ecological processes resulting from pressures linked to changes in the 

structure and functioning of the ecosystem, and thus to the delivery of ESS (ecosystem 

services)? 

 To what extent do those social dynamics and responses trigger those changes? Could we 

prioritise them regarding aquatic ecosystem management?  

 What is the role of biodiversity in this connection? 

Existing models (environmental, social and integrated models) could improve as they have 

built-in missing aspects, weaknesses in temporal, spatial or conceptual applicability or 

simplified structure. However they represent a meaningful starting point to match the 

analytical ambitions of the AQUACROSS project and to provide insightful and relevant 

explanations (rather than descriptions) on the casual relationships involved in the 

AQUACROSS Architecture. 
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Table 1: Comprehensive table of existing analytical or assessment frameworks 

Framework What is assessed Usefulness to AQUACROSS 

AF 
Constraints/ Difficulties to overcome/ Further contributions 

DESSIN ESS 

Anzaldúa et al., 

2016 

Ecosystem Services (ESS) Innovative solutions for water 

scarcity and water quality, impacts 

and benefits 

Follows an adapted DPSIR Framework. 

DPSIR,  

EEA, 1999, 2003 

Linkages between 

ecosystem State and D-P, I-

R 

Causal links, Policy interface Multiple pressures, interlinkages, non-linearities, synergies (Rekolainen et al., 2003; 

Svarstad et al., 2008) and societal/ecosystem responses have to be considered (Gari et al., 

2015). Unclear boundaries/definitions (Cooper, 2013; EEA, 2015a; Gari et al., 2015). 

Limited focus on ESS (Collins et al 2011; Kelble et al., 2013).  

More references: Atkins et al., 2011; Kandziora et al., 2013, Impact as impact on human 

welfare, (Langmead et al., 2007; O'Higgins et al., 2014a), applied to freshwater 

(Koundouri et al., 2016), a review for coastal management (Lewison et al., 2016), 

DAPSI(W)R(M) for marine (Scharin et al., 2016). See also derived Driver-Pressure-State-

Exposure-Effect-Action (DPSEEA: Reis et al., 2015), Framework for Ecosystem Service 

Provision (FESP: Rounsevell et al., 2010), Integrated Science for Society and the 

Environment framework (ISSE: LTER, 2007). 

EPI-Water project, 

Zetland et al., 2011 

EPIs (Economic Policy 

Instruments) 

Environmental and economic 

dimensions, Coupled human and 

natural systems, Linkages through 

behaviour  

No known constraints, difficulties to overcome or further contributions. 

GLOBAQUA project 

Navarro-Ortega et 

al., 2015 

Stressors Water management options under 

scarcity  

Limited to freshwater (river basins) and identified stressors. 

 

IPBES, IPBES, 2014, 

Díaz et al., 2015 

Social-ecological system 

(SES) 

Linkages between biodiversity and 

ESS, Stakeholders, Knowledge – 

policy interface, Multiple scales 

Testability. Shared-understanding (Potschin et al., 2016). Lacks a long-term scenario 

strategy (Kok et al 2016). See also Sub-Global Assessment Network (SGAN) 

http://www.ipbes.net/sites/default/files/downloads/Decision%20IPBES_2_4.pdf
http://www.ecosystemassessments.net/about/about-sgan
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MAES Maes et al., 

2013, 2016, Erhard 

et al 2016 

ESS: mapping and valuing + 

data on ecosystem 

condition by EEA 

Building baseline scenarios for 

supply side 

Integration of linear river network data into spatial ecosystem maps (EEA, 2015a, 2016, 

Data for marine ecosystem and ESS considered for freshwater (Maes et al., 2013, EEA, 

2015a). Demand side, monetary valuation (Brouwer et al 2013). Absence of stakeholder 

consultation to complete data and models at a lower spatial scale. See also ETC/BD: 

marine pilot study (Evans et al., 2014). 

MARS project, 

Hering et al., 2015  

Linkages between multiple 

stressors, ecological 

responses and functions 

Water bodies, Long term, Informs EU 

water policies 

No known constraints, difficulties to overcome or further contributions.  

Millennium 

Ecosystem 

Assessment (MA) MA 

2003, 2005 

ESS Conceptual Framework, Integrates 

different perspectives 

Intermediate ESS are not considered and limited economic valuation (Brouwer et al 2013). 

Spatial and temporal data coverage. Models for long-term dynamics are required. 

Transition zones. Multiple scales and difficulties translating ecological to political 

boundaries and vice versa. Uncertainties developing scenarios. 

Another conceptual framework to analyse ESS delivery (Villamagna et al 2013).  

MSFD,  

MARMONI Tool 

Environmental Status GES determination 

Indicators 

 

Multiple components, double counting, comparability across regions (Borja et al., 2014; 

2016). ETC/BD contribution to the state across marine regions (Aronsson et al., 2015). 

Requires intercalibration to demonstrate the coherence in application and 

implementation. See also MaPAF (Marine Protected Area Protection Assessment 

Framework, Rodríguez-Rodríguez et al., 2016). 

ODEMM project, 

Robinson et al., 

2014  

EBM options, Impact chains, 

Weight of the links and 

threats 

Holistic, trade-offs, Adaptable 

regional scales, Pressures and GES 

descriptors, Prioritizing EBM 

responses, Resilience  

Limited to marine ecosystems. Knowledge gaps and data limitations. Limited applicability 

of criteria with available information. Non-linear effect can be undervalued.   

Tools: Assesing the State of Good Environmental Status; Linkage Framework; Pressure 

Assessment; Ecological Risk Assessment; Integrated Management Strategy Evaluation 

(iMSE). 

OpenNESS project. 

Cascade model, 

Potschin et al., 2014 

ESS Operationalisation, Informs policy, 

Cross-scale analysis 

Limited for decision-making (Potschin et al., 2014; Primmer et al., 2015). 

OPERAs project, 

Kettunen et al., 

ESS Demand side, Contributions to See http://operas-project.eu/resources for relevant project deliverables. 

http://www.sea.ee/marmoni/Marmoni%20Biodiversity%20assessment%20tool%20-%20Documentation.pdf
http://odemm.com/content/assessing-state-good-environmental-status
http://odemm.com/content/linkage-framework
http://odemm.com/content/pressure-assessment
http://odemm.com/content/pressure-assessment
http://odemm.com/content/ecological-risk-assessment
http://odemm.com/content/integrated-management-strategy-evaluation-imse
http://odemm.com/content/integrated-management-strategy-evaluation-imse
http://operas-project.eu/sites/default/files/resources/d3-3towards-framework-assessing-es-nc-integration-different-levels-governance-final-draft-4-feb-2015.pdf
http://operas-project.eu/resources
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2015 human well-being 

POLICYMIX project, 

Barton et al., 2014 

Economic instruments for 

biodiversity conservation 

and ESS provision 

Effectiveness, Efficiency/Cost-

effectiveness, Legitimacy/fairness, 

Legal and institutional fit, Interaction 

between policies 

Multi-scale approach is difficult. 

RACER project, 

Christie & 

Sommerkorn, 2012 

Ecosystems’ features 

(drivers) 

Region-wide resilience, Forecasts 

and scenarios, Management targets 

Focused on climate change effects. 

RAPTA O’Connell et 

al., 2015 

Projects Principles of resilience thinking, 

Understanding complex adaptive 

systems (CAS), Multiple social-

ecological interactions and decisions  

Limited to development projects. 

Regulatory Impact 

Assessment (RIA) 

OECD, 2008 

Policies Cost-benefits analysis, Scenarios Limitations linked to acceptance (OECD, 2008). Limited integration of ESS concept (Diehl 

et al., 2016). See also Integrated policy Impact assessment (IA). 

SEEA UN, 2014: 

Central Framework 

Stocks and flows  See also UN, 2012: SEEA for Water and Brouwer et al 2013 for a discussion. 

SES framework (built 

on the foundations 

of the IAD 

framework; 

McGinnnis & 

Ostrom, 2014)  

Social-ecological system User’s choices, Self-organizing, 

Understanding CAS 

See also Ostrom, 2009 for applicability on fisheries management. 

SOER project, EEA, 

2015 

Policy responses, trends, 

NC, state, impacts and 

scenarios 

Societal adaptation, EBM approaches, 

Resilience thinking, Demand side 

(linkages to well-being) 

Focused on emissions and pollutants. Applicability under national scale. Contributions of 

European Topic Centre on Inland, Coatal and Marine Water (ETC/ICM). 

http://www.eea.europa.eu/soer
http://www.eea.europa.eu/soer
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SRC,  

Schlüter et al., 2015 

Social-ecological systems Principles for building resilience: 

Simonsen et al., 2014, ESS included, 

CAS thinking, Policentricity 

See also Rocha et al., 2015 for contributions with models on marine regime shifts. 

Strategic 

Environmental 

Assessment 

(European 

Commission, SEA)  

Plans/programmes Provides scenarios Limited flexibility and dynamism to be strategic enough for decision-making (Sheate et 

al., 2001, King & Smith, 2016). 

TEEB, TEEB, 2010a Economic and social 

drivers, ESS valuation 

Understanding social choices, 

Addressing trade-offs 

Valuation does not reflect variation in ecosystem quality. Intermediate ESS are not 

considered (Brouwer et al 2013). See also Russi et al., 2013 for Water and Wetlands. 

(See also: the Ecosystem Properties, Potentials and Service  (EPPS: Bastian et al., 2013) 

framework differentiates between the potential and real supply of ecosystem goods and 

services and the biophysical prerequisites underpinning these). 

UK NEA, UK National 

Ecosystem 

Assessment, 2014 

ESS Identified social values Data limitations for a complete set of ESS. Heterogeneous valuation of ESS (Brouwer et al 

2013). See also Kenter et al., 2013 valuing UK Marine Protected Areas (MPAs) 

UNEP-WCMC, 

SANBI & UNEP-

WMCM, 2016 

Ecosystems (spatial 

assessment) 

Informs policy, Prioritisation 

(NBSAPs), Guiding principles 

(usability, integration across realms) 

Focused on threats and ecosystem condition on protected areas. Categorization of threat 

status of ecosystems (simplicity). It includes ecological processes and ESS, but not the 

demand side. Limited applicability on different spatial scales. 

WFD  

Guidance, EC, 2003 

Pressures and impacts. 

Linkages to ecological 

status 

Integration, Stakeholders, Economic 

analysis, derived PoMs 

Analysis follows DPSIR framework, with specificities for surface water bodies (river, lakes, 

coastal/transitional) and groundwater bodies. European Topic Centre on Biological 

Diversity (ETC/BD) contribution to integrated wetland management (Snethlage, 2015). 

WISER project, 

Models, Methods 

database 

Ecological status, recovery 

scenarios  

Identifies degree/causes of 

degradation, Integrated perspective 

including uncertainty 

Focused on restoration. Limited to freshwater. 

http://ec.europa.eu/environment/eia/sea-legalcontext.htm
http://uknea.unep-wcmc.org/LinkClick.aspx?fileticket=KLy76Rak0WQ%3d&tabid=82
http://ec.europa.eu/environment/water/water-framework/facts_figures/guidance_docs_en.htm
http://www.wiser.eu/results/conceptual-models/index.php
http://www.wiser.eu/results/conceptual-models/index.php
http://www.wiser.eu/results/conceptual-models/index.php
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1.3 What is to be assessed 

1.3.1  Social-ecological aquatic systems as complex and adaptive 

ones 

As stated in the AQUACROSS Innovative Concept (Gómez et al., 2016) the project’s research 

strategy is based upon the consideration of SES as complex and adaptive, as well as mutually 

interdependent. As in Hagstrom and Levin (2016), over the last two decades complex 

adaptive systems have been refined from a somewhat abstract notion into a concrete concept 

with a series of tools and practical dimensions (i.e., coupling ecological and evolutionary 

dynamics, integrating multiple scales, using data to infer complex interactions, etc.), which 

can be used to address specific societal challenges.  

Pondering the interdependencies between ecological and social systems does not seem to be 

merely an option anymore but a pre-condition both to better understand the social, political 

and environmental challenges we face and to compare alternative courses of action, whilst 

improving the collective capacity to respond to them.  

Complex adaptive natural systems are characterised by emergent patterns, such as food-web 

structure and nutrient cycling. Two fundamental and intertwined sets of challenges are 

therefore to be understood: the first are fundamental modelling challenges presented by the 

interplay among phenomena at different scales (time, space, organisational complexity), as 

addressed in Section 2.6.3; the second involves the resolving the public-good and common-

pool-resource conflicts that emerge.  

The latter cannot be addressed at all without an equally complex understanding of not just 

the natural dimensions of these emergent patterns in ecosystems, but also of social and 

economic dynamics. The reason may seem obvious and still remain unaddressed in 

conventional approaches: these challenges arise not only in the description but also in the 

management of any complex adaptive system. The AQUACROSS AF explores them in aquatic 

ecosystems.  

AQUACROSS’ integrated approach to sustainability, as reflected in this AF, thus builds upon 

the understanding of both systems and their interlinkages to develop innovative management 

approaches and tools focused on the restoration and protection of critical aquatic ecosystem 

components, as a means to sustain biological diversity and the delivery of ESS in the long 

term.  

1.3.2  The integration of knowledge as a means to truly integrated 

responses 

According to the innovative concept (op. cit.), at the analytical level AQUACROSS aims at 

mobilising and integrating knowledge so as to understand 1) how social and ecological 
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systems are linked at multiple levels and across different scales, 2) how these linkages give 

rise to the dynamics we see at the system level, and 3) what the role of mutual 

adaptation/co-evolution is.  

Yet, all this should be functional to a more specific objective on practical grounds, consisting 

in providing the means and the ends to deliver a better political response to current 

sustainability challenges in all policy domains linked to water and biodiversity. Full scenarios 

instead of bounded models are therefore critical given the emphasis on showing the 

advantages of holistic approaches over partial ones.  

Dietz et al. (2003), in their seminal paper on the struggle to govern the commons, 

highlighted that no challenge facing ecosystem science is actually more important than 

managing the interactions of humans with their environment. Not in vain, some of the central 

features of complex adaptive systems (CAS), such as conflicts between individual and 

collective goals or alternative stable states, are common drawbacks to the management of 

natural resources and SES.  

Hence, the ambition of improving knowledge to provide better management responses 

pervades the full strategy of the project from the definition of policy challenges or the setting 

of objectives, to the identification of opportunities, the screening of innovative responses and 

the design, implementation and assessment of alternative courses of action. All these 

elements must be framed into comprehensive and holistic frameworks able to capture all 

relevant interactions at stake, thus making the difference with limited partial approaches 

more visible.  

Realising this ambition entails new requirements in terms of analytical complexity. For 

instance, the definition of any policy problem requires factoring in multiple interactions and 

not just the set of variables more directly linked to a well-defined target, such as reducing 

overfishing of particular species, reducing water demand up to a certain level or guaranteeing 

a certain water quality parameter.  

Rather, AQUACROSS aims at showing the shortcomings of prevailing practice, both in 

collective and private decision-making frameworks, consisting in managing the provision of 

particular ESS (such as water supply, fish biomass, timber), through controlling others (water 

storage, provision of food and raw materials) at limited temporal and spatial scales (mostly 

short term and local) within well-defined system boundaries (of a water body, fishery or a 

plantation) and assuming the stability of the system throughout the medium and the longer 

term (see Gómez et al., 2016, Section 2 for more details). In other words, in order to fulfil its 

research ambitions, policy problems cannot be set within the boundaries of partial 

optimisation models but rather should rely on the best possible understanding of the whole 

SES.  

Overall, instead of specific optimisation models, comprehensive scenarios that are able to 

inform decision-making are required. This is consistent with the project’s hypothesis that 

decision support models that do not consider the complexity and adaptability of natural and 
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social systems may well lead to socially and environmentally irrelevant (or, at worse, 

undesirable) outcomes.  

Models that exclude non-linearities or even the possibility for evolution and adaptation still 

typically guide aquatic ecosystem management. Policies and plans are often thwarted, thus 

leading to critical transitions and irreversible losses. Very often this is explained as a result of 

the unpredictability of human behaviour or the intricacy of the underlying ecosystem 

dynamics, when in fact it is likely to be the outcome of an inadequate assessment of both 

issues and their complex interactions.  

1.3.3  Co-building scenarios between stakeholders and 

researchers: business as usual versus new policy 

responses 

The AQUACROSS baseline scenarios are built to provide a comprehensive representation of 

the overall SES focusing on the relevant interactions and identifying environmental and policy 

challenges. This effort combines scientific knowledge and data with stakeholders’ 

perceptions. Therefore, building a baseline scenario is not just a scientific endeavour but also 

the result of matching this knowledge with expert judgements and stakeholders’ beliefs and 

perceptions (Caudron et al., 2012).  

Ideally, a baseline scenario is a commonly agreed upon and shared representation of current 

and prospective problems, challenges and opportunities that society and the environment 

face (Verburg et al., 2015; Pichs-Madruga et al., 2016). For this reason, the right approach 

consists in co-building that baseline through a meaningful science-policy dialogue in which, 

for instance, first impressions by stakeholders on the factors driving ecosystems’ degradation 

are challenged with empirical evidence and scientific explanations. 

An exercise of this kind may result in the demand of precise and well-focused scientific 

answers to relevant problems (such as whether reductions in fish biomass landings are due to 

previous overfishing or to the degradation of the supporting ecosystem). Such an exercise 

may also provide the basis to build a shared perception of the problem and its driving 

factors, which is a critical requirement for cooperation and collective action. 

The design of scenarios plays a critical role in the entire project at least for two key reasons 

(see Prewitt et al., 2012, for an insightful discussion along these lines): 

 It allows the enhancement of the policy relevance of scientific knowledge. Well-designed 

scenarios are but communication platforms that bring science into the policy-making 

process, thus making stakeholders aware of multiple relevant interactions in SES and 

helping them assess current practice, screen new opportunities, and improve the design 

and implementation of policy responses. Policy-relevant, scientific knowledge makes the 

value of science for policy visible and allows aligning research, innovation, and policy 

priorities.  
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 In turn, it fosters the enhancement of the scientific foundations of policy. Frontier (or 

simply new) knowledge is functional to the identification of novel courses of action. It 

also favours a better identification of the opportunity costs and the benefits of traditional 

and innovative approaches. In such a way, it is therefore possible to anchor many 

sensitive policy debates on empirical evidence, instead of just on perceptions or 

prejudices. This leads to shared views of sustainability challenges amongst stakeholders 

so as to promote cooperative responses rather than competitive ones. Policymaking 

based on scientific knowledge supports a common ground and helps build consensus, 

hence focusing policy discussions on trade-offs and making choices where stakeholders’ 

preferences and vested interests are really relevant.  

Box 1: Scenarios and the policy-making process  

Ferrier et al. (2016) identifies four types of scenarios depending on their role over the policy-making cycle: 

1. Baseline scenarios that represent observed past and plausible futures, often based on storylines and on 

the best information available (as the ones considered in Section 2.1).  

2. Normative or “target-seeking scenarios” representing objectives, deficits and sometimes alternative 

pathways for reaching this target (as the ones considered in Section 2.2 on policy objectives). 

3. Policy-screening scenarios” (also known as ‘ex-ante scenarios’), to represent, assess and compare 

alternative policy instruments or measures ex-ante. 

4. Retrospective policy evaluation (also known as ‘ex-post evaluation’), that represents the observed 

trajectory of a policy implemented in the past and assess by comparison against baseline scenarios. 

On a similar note, the analysis of scenarios involves two main intertwined objectives:  

 The first general objective is a positive (as opposed to normative) one. It consists in 

representing the best available knowledge to understand the complex SES to be 

managed. At this stage the main purpose is making the AQUACROSS concept and 

Architecture (see below) operational so as to provide stakeholders with the very best 

science to understand management challenges and opportunities at hand and to help 

them build a shared perception of the problem, and of the alternatives to deal with it. 

Knowledge about the different parts of ecosystems and society is piecemeal (i.e., not all 

parts of knowledge are available) and clearly imperfect (i.e., science is imprecise and 

most relationships are, to some degree and at best, uncertain). This is against the 

ambition of building an extensive representation of the whole SES and all its interactions. 

And this is also why building full-fledged science-based scenarios is an elusive task.  

Rather than a precise cookbook, the AQUACROSS Architecture, or the structure upon 

which the scenarios are built, consists in a heuristic approach based on the best available 

science but also on narratives and explanations to navigate through social and ecological 

interactions. Scenarios are informal but meaningful constructs that use all sources of 

knowledge, from hard science to narratives based on stakeholders’ perceptions. Albeit 
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imprecise, their objective is to provide policy-makers with a comprehensive view of the 

SES. 

 The second general objective is actually a normative one. It consists in assessing the 

whole system and representing the policy challenge at stake. Therefore, the baseline 

must serve to identify sustainability concerns. They include the identification and 

explanation of the underlying causes of the detrimental processes affecting the 

ecological system, and the socio-economic system (such as water depletion, biodiversity 

losses, population decline, increasing drought risk, etc.). Explaining the factors that drive 

these processes (such as wrong incentives, market conditions, inappropriate policy 

responses, etc.) and the need to take steps to handle these challenges (in order to curb 

degradation processes, protect human welfare, create job opportunities, avoid an 

economic downturn, etc.). 

These problems must be presented as a governance challenge, that is to say a challenge 

requiring some sort of collective action to restore the consistency between private 

(individual) decisions (of those who benefit from existing ESS, such as fish or water 

provision that might not be used sustainably), and the public trust (that would 

presumably be preserved should current degradation processes come to a halt).  

Both objectives (building a baseline scenario, representing the system, and ascertaining the 

management challenge) are closely connected to each other. For instance, the levels of detail, 

the activities or links that deserve more attention, the scales of the analysis, etc. are largely 

determined by the environmental challenge at hand. For example, baselines to inform 

freshwater management issues at river basin scales are indeed different from those required 

to support marine or coastal ecosystem management (see e.g., Ellis et al., 2011, including a 

case study in the Baltic Sea).  

1.3.4  Ecosystem-based management approaches taking centre 

stage 

The AQUACROSS EBM approach will be primarily driven by policy objectives (see Section 2.2). 

Overcoming current practice and progressing towards the implementation of holistic and 

integrated responses based on the ecosystem is significantly more demanding both for 

science and policy than ‘going with the flow’. 

On one hand it requires considering the complex structure and links of the full SES that have 

traditionally been ignored in conventional practice (see above). On the other it requires 

institutions and policy-making processes that are able to enhance cooperation and provide 

integrated responses to both the social and ecological challenges. 

The concomitance of public-good and common-pool-resources attributes is inherent to CAS. 

Yet, so is cooperative behaviour, from microbial ecosystems to human societies. 

Understanding the enabling conditions that promote or the factors that hinder cooperative 

behaviour is critical to the design and implementation of EBM approaches: progress in 
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evolutionary theory (Wasser, 2013) and game theory (e.g., Punt et al., 2014) has been 

considered as specially promising.  

Setting up social-ecological policy challenges and appraising the many different alternatives 

to cope with them is more than just a purely scientific or political endeavour. This ambitious 

task requires both a conducive political process and the mobilisation of the best available 

scientific knowledge to support stakeholders and decision-makers throughout the whole 

policy cycle. 

Scenarios are double-edged decision-support systems: on one side, they must rely on 

validated data and sound scientific insights as a critical condition for their credibility but, on 

the other, they must have the ambition to become a collective representation both of social 

and ecological problems and opportunities and alternatives to deal with them. In fact, even a 

sound scenario based on scientific methods and proven facts would only be relevant for 

policy action if co-developed or assumed by social agents. 

Due to the holistic nature and complexities involved in aquatic SES, it is clear there is neither 

a one-size-fits-all EBM approach nor just one EBM implementation path. Additionally, it is 

critical to understand that more science may not necessarily close the existing knowledge 

gaps. Rather, each individual situation (i.e., case study) may need to be considered in its 

institutional and political setting, and requires site-specific trade-offs.  

Under an EBM approach science is not only intended to inform and make technically sound 

decisions but rather as a means to build a credible knowledge base through the dialogue and 

interaction between scientists and stakeholders. This involves the integration of multiple 

kinds of knowledge ranging from hard science to storylines. 

It is often argued that EBM approaches are characterised by their contribution to ecological 

integrity, biodiversity, resilience and ESS delivery; their use of scientific knowledge; their use 

of appropriate spatial scales; their acknowledgement of social-ecological interactions, 

stakeholder engagement and transparency; transdisciplinarity and integrated management; 

and adaptiveness (see, for instance, Deliverable 2.1: Rouillard et al., 2016). However, unlike 

common wisdom, EBM does not exclusively show those features and several approaches that 

are not based on the ecosystem may well do.  

EBM, though, of course shows some distinctive features: 

 EBM factors in the dynamic to balance ecological and social concerns. EBM gives 

prominence to governance and relationship among and between species, as well as their 

abiotic environment. 

 Unlike conventional approaches that focus on single benefits, EBM approaches are 

characterised by multiple benefits or environmental services, thus meeting at once 

targets across different policy domains. In other words, EBM aims at maximising the joint 

value of all ESS and abiotic outputs, rather than focusing on the delivery of single ESS.  
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 EBM approaches, like other management approaches, are based on scientific knowledge, 

but what sets EBM apart is the kind of scientific knowledge that is harnessed, as well as 

the way in which it is integrated into the decision-making process.  

 Managing ecosystems is much more elaborate than managing single water bodies, single 

natural assets or even watersheds, just to mention a few examples. EBM decisions should 

therefore take place at the appropriate level, taking into account ecosystem boundaries, 

complex connections, and adaptive processes.  

 The analysis of EBM may benefit from the exploration of the concept of meta-ecosystem 

(Loreau et al., 2003). This notion provides a powerful theoretical tool to ascertain the 

emergent properties that arise from spatial coupling of local ecosystems, such as global 

source-sink constraints, diversity-productivity patterns, stabilisation of ecosystem 

processes, and indirect interactions at landscape or regional scales.  

 Ecosystem connections within and across aquatic realms should be considered, as 

management interventions in ecosystems often have unknown or unpredictable effects 

on other ecosystems.   

 Rather than treating society and the environment as separate entities, EBM acknowledges 

social-ecological interactions and seeks inclusive policy-making processes that favour 

transparency and provide a better framework to confront people, businesses, and 

governments with the consequences of their own decisions.  

1.3.5  The identification and structuring of policy objectives and 

the clearcut distinction between objectives and 

assessment criteria 

The definition and structuring of objectives, essential for the assessment, builds upon the 

baseline analysis (see Section 2.1), where the main challenge and the policy context is to be 

set along with policy priorities for the local level. The definition of objectives and their 

operationalisation for assessing progress at the local level would benefit from the analysis of 

social drivers of ecosystems change, the resulting pressures and the assessment of the 

current, and baseline status of the relevant ecosystems (see Section 2.4), as well as from the 

analysis of how all this connects with biodiversity, and ecosystems services (see Section 2.5). 

The precise definition of objectives should provide a standpoint for screening, assessing, 

designing, and implementing the management alternatives to reach these objectives. 

The identification of objectives combines two important levels that are complementary and 

closely connected to each other but clearly different in nature.  

 At a global and EU level, objectives need to be defined in terms of contributions to 

meeting the targets of the EU 2020 Biodiversity Strategy and other international targets 

within aquatic ecosystems, while contributing to the objectives set in the EU directives 

and strategies related to habitats, biodiversity, and aquatic ecosystems. 
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 At a local level, objectives need to be defined to respond to a well-defined environmental 

challenge (such as dealing with invasive species, reducing nutrient pollution, improving 

hydrological flows and water retention, etc.). 

These levels do not refer to different objectives but rather to how abstract EU-level goals are 

defined and specified at local and ecosystem scales so that, besides compliance with EU 

regulations, policy priorities, available information and local circumstances are taken into 

account.  

The future of water and biodiversity depends on the concerted action of many agents from 

local to global levels. Global, regional or national actions are considered as part of the 

baseline scenario, while the policy scenario is centred only on those actions that could be 

adopted by local authorities and stakeholders within their powers and opportunities. 

The AQUACROSS concept (Gómez et al., 2016) stresses upon the fact that both levels of 

objectives refer to desired or target conditions of the ecological system (rather than the SES 

as a whole). At a local level, however, objectives must be designed in order to restore the 

sustainability of the whole SES. This overarching goal entails a necessary precondition: 

reaching the sustainable status of the ecological system. It is now common practice that the 

goals of EU environmental policy (see Section 2.2) and the goals of the relevant strategies or 

Directives are stated in terms of conservation, protection, enhancement of biodiversity, 

habitats, water bodies, etc. In other words, whilst the assessment refers to both the 

ecological and the social system along with the complex links among them, primary 

objectives only seem to address the ecological system. 

One may wonder why important societal objectives such as enhancing adaptability, improving 

the institutional capacity to design and implement comprehensive and ambitious EBM 

approaches, gaining political acceptance, improving fairness and other social goals are not 

the chief objectives of policy. The basic reason for this is that these ambitions are not 

objectives themselves, but rather the means that would make it possible to meet primary 

objectives of policy action in the domains of water and biodiversity.  

This caveat is particularly relevant to clear out the difference between objectives and 

assessment criteria. The former (Section 2.2) refers to the primary ends of environmental 

policy whereas the latter (Section 2.3) refer to the criteria to judge the system and the 

alternative means that may be used to reach those goals. Within the AQUACROSS approach 

any policy objective is defined in terms of a desired or target condition of the involved 

aquatic ecosystem, including its biodiversity. Thus, the analysis of any other ambition related 

to the social system (such as mobilising enough financial resources, gaining political 

acceptance, improving social fairness, etc.) is considered within criteria to assess the 

alternative ways to reach the primary environmental targets, then to assess the institutional 

capabilities to meet what is actually required for sustainability. 
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1.3.6  A three-tier assessment on the basis of different criteria 

Judgement criteria are connatural to policy action. The AQUACROSS concept and Architecture 

allows mobilising and representing scientific knowledge, data and models, in a 

comprehensive way such that this can be taken by stakeholders so as to improve policy-

making and management decisions to address environmental challenges linked to water and 

biodiversity. Harnessing this knowledge to make policy decisions requires assessing current 

and prospective scenarios, as above, in order to evaluate the pros and cons of taking 

remedial actions, solving trade-offs, comparing alternative courses of action, improving 

policy design and implementation, etc.  

The criteria under which alternative states and courses of actions are assessed are not only 

essential to make policy decisions but also to disclose alternatives in a structured, 

accountable, and transparent way. When those criteria are applied through the use of the best 

available knowledge, they reduce discretion in policy decisions in turn increasing trust 

amongst stakeholders; contributing to develop shared visions of environmental and economic 

challenges; and enhancing opportunities to improve cooperation. 

Informed judgements, that is to say applying criteria for comparison, are inherent to 

decision-making. There are two complementary but closely connected levels of assessment 

that require differentiated criteria. On the one hand, criteria are essential to evaluate, or 

assess, situations or scenarios; on the other, they are key to assess different policy 

alternatives.  

In the first case all criteria are functional to judge the sustainability of the whole SES. In the 

second what is important is a set of criteria to build up the comparison between the 

outcomes associated to alternative policy decisions (including inaction – an alternative also 

entailing costs and benefits). Accordingly, it is useful to make a clear distinction between two 

types of criteria: those designed for assessing the whole system (or system criteria) and those 

designed for assessing the outcomes of alternative courses of action (output criteria). 

Emphasis will be placed on setting what criteria are relevant at any stage of the analysis, 

making a clear distinction between those that are most informative for judging the following 

three aspects: 

 Baseline scenarios. Assessment of baselines is essential to identify sustainability 

problems, representing ongoing processes, supporting the definition of current 

sustainability challenges, and helping define policy targets at the scale of any study site. 

Assessment of baselines is also of paramount importance to highlight opportunities and 

barriers to overcome sustainability challenges, hence to support the definition of 

management strategies. 

 Policy scenarios. Counterfactual scenarios result from the implementation of EBM 

approaches and must be judged, in general, on the basis of their contribution to 

sustainability and, in particular, for their intended and realised contribution to reach 
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policy targets (effectiveness) and for their contribution to human well-being (efficiency, 

equity). 

 Decision-making processes. These processes refer to the potential of current 

institutional policy set-ups to properly address sustainability challenges within prevailing 

governance structures. It involves criteria for judging the capacity to overcome 

institutional inertia, technology lock-ins as well as conventional analytical approaches in 

order to advance towards better policy coordination, and innovative technological 

approaches based upon integrative management strategies (i.e., EBM). Criteria under this 

category will support reform efforts as an integral part of EBM. 

1.3.7  The demand for aquatic ecosystem services delivery and 

abiotic outputs 

For an improved understanding of aquatic SES and its interconnections, the AQUACROSS 

architecture (see below) considers two interrelated sets of linkages between the ecological 

and the socio-economic parts of the system. The supply-side perspective (see Section 2.5) 

describes and analyses the capacity of the ecological system to fulfil the social demands of 

ESS, thus contributing to human welfare. The demand-side perspective (see Section 2.4), in 

turn, describes and analyses how the effective demand of all kinds of ESS and abiotic outputs 

by the socio-economic system affects the ecological system, its structure, and functioning.  

Accordingly, the demand-side perspective conceptualises how human activities result in 

demands of ESS and abiotic outputs that may trigger detrimental changes to ecosystems 

through the pressures they exert over their components and structure. Besides its relevance 

to understanding impacts of human decisions and actions over nature, this assessment level 

is also essential to understand how human action impacts ecosystems and biodiversity and 

the capacity of aquatic ecosystems to continue providing the services society depends on.  

The link between society and ecosystems is analysed through the identification of all relevant 

social, policy and economic processes which may result in a pressure (or a combination of 

them) over the ecosystem or, in other words, of the drivers of human pressures over 

ecosystems.  

The emphasis on human drivers within the overall AF is explained because these drivers and 

all their determining factors in the social and economic system can be the focus of 

management decisions. In other words, they can be changed. However, natural adaptive 

processes are indeed also explored as they are essential to build robust and realistic 

scenarios for evaluation of management strategies but their direct control is out of reach for 

humans.  

Social or human drivers of pressures over ecosystems are the effective demand for all kinds 

of goods and services provided by nature to the social system, including ESS and abiotic 

outputs from the ecosystem. The basic goods and services provided by nature (such as raw 

water, fish, building materials, navigation, pollution disposal, etc.) are essential means to 
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produce a plethora of final abiotic outputs and services (such as drinking water, food, shelter, 

recreational services, clean air, health, etc. In turn, these products and services provided by 

nature are the actual reason human socity is concerned with the conservation of the 

ecosystems on which the future availability of these services, and thus human wellbeing, 

depends. 

Within the AQUACROSS, drivers are the outcome of complex institutional, social and 

economic processes. Consequently, managing responses should go beyond the direct 

regulation of single activities (such as fishing) or related pressures (such as seafloor abrasion) 

to encompass broader management alternatives such as managing food chains, aquaculture, 

marine protected areas, incentives, pricing regulations, research, technological development 

and innovation, etc. For such ambitious management responses, having the best 

understanding of what determines the drivers is at least as important as describing the 

drivers themselves (see for instance: Martín-Ortega et al., 2015; OECD, 2016). 

Pressures, in turn, are mechanisms through which a driver has an effect on the environment. 

Pressures can be physical (e.g., extraction of water, emission of noise), chemical (e.g., 

emission of chemicals or waste) or biological (e.g., extraction of aquatic species, introduction 

of microbes and non-indigenous species, etc.). These kinds of pressures are the direct result 

of primary activities to co-produce the nature-based services demanded by the social 

system. The pressures are different to those changes that are inherent to the processes 

taking place spontaneously in the ecological system (natural disturbances). However, to 

understand the complex mechanisms that lead to specific states of the environment or the 

ecosystem, they can be considered. Moreover, in the presence of those natural disturbances, 

pressures can exacerbate changes and push the ecosystem towards a regime shift, i.e. push 

the subsystem into a new stable state that is different to the former one, or to the 

acceleration of other change processes (Folke et al., 2004).  

Within AQUACROSS, significant pressures are those that result in a change in ecosystem state 

leading to a change in the functioning of the ecosystem, and thus can impact both 

biodiversity and human welfare. Most studies to date attempt to deal with single pressures; 

yet, attempts have been made to consider multiple pressures and their cumulative or 

interacting effects on ecosystem state through additive, synergistic or antagonistic responses 

(see, for instance, outputs of EU FP7 MARS project).1 

Understanding how ecosystem states change in response to human activities and their 

resultant pressures requires a good conceptual basis that links the causes and consequences 

of that change (Borja et al., 2016). This conceptual basis is most often described in aquatic 

realms in terms of a categorisation of information to capture multiple causes and the nature 

of change in ecosystem state, and the impacts of change on human welfare (Cooper, 2013).  

 

                                           
1 MARS project: Managing Aquatic ecosystems and water Resources under multiple Stress 

http://www.mars-project.eu/
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1.3.8  The supply of aquatic ecosystem services and abiotic 

outputs and how they are determined by biodiversity 

levels  

Change in the state of aquatic ecosystems (i.e., changes in their structure and functions) can 

lead to changes in the supply of ESS and abiotic outputs, and thus in the services and the 

benefits to society that can be obtained, while at the same time compromising the 

preservation of ecosystems themselves.  

The supply side influences the demand-side perspective in terms of how the ecosystem 

benefits society, but it is also influenced by the demand side through drivers, pressures and 

resulting changes in the state of the ecosystem.  

The effects of pressures on the ecosystem have been explored both through field-based 

observations and experimental manipulations. These studies tend to inform about the effects 

at the species or, less frequently, the process level. However, it is relevant to understand how 

or if these changes would lead to any change in the capacity of the ecosystem to supply 

services. The metrics used to describe how pressures change ecosystem state may not be the 

appropriate metrics themselves to describe and explain how the ecosystem contributes to the 

supply of all services.  

In order to consider how these changes might lead to an effect on the supply of ESS two 

elements are needed. Firstly, which services are underpinned by the functions and processes 

of benthic communities (flora and fauna)? Secondly, in what way these communities supply 

services and to what extent measurements of abundance and/or biomass capture this? 

Pressures can have multiple effects and act on structures and processes and functions. 

Different services may be affected in different ways by the same pressure. Pressures can have 

direct and indirect effects on service provision. The way pressures affect the system is 

explored further in Deliverable 5.1 (Nogueira et al., 2016).  

1.3.9  From datasets to data flows; moving from measurement to 

analysis 

Understanding and predicting the behaviour of complex adaptive SES involves integrating 

information from many different disciplines. While the AQUACROSS Architecture (see below) 

(and other similar conceptual frameworks such as the DPSIR) provide a conceptual basis for 

broadly understanding the causal relationships between different components of the system, 

quantifying these interrelationships between different components requires specific 

disciplinary inputs, and may involve consideration of tipping points and non-linearities. 

For any individual system there may be many environmental or social processes that remain 

unknown and non-modelled and which lead to a variety of uncertainties in the outputs of a 
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particular analysis.  Within the AQUACROSS project the AF provides a basis for analysis of the 

various unique case-study systems. 

The particular types of data and information for analysis in these specific case studies vary, 

as do the specific levels of disciplinary capacity and expertise. Designing a framework that is 

sufficiently flexible to accommodate the intricacy of adaptive SES, while also accounting for 

the variety and uncertainty in the types and quality of data for analysis therefore represents a 

major challenge.  
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1.4 How to read this document: What you will 

find and what you won’t 

Part II of this living document focuses on the conceptual and practical dimensions of how to 

assess EBM approaches (as part of new policy responses), against baseline scenarios, aiming 

at achieving the targets of the EU 2020 Biodiversity Strategy and other international 

biodiversity targets.  

The document thus follows a sequential approach from the design of baseline and policy 

scenarios (Section 2.1) to the assessment of crosscutting issues (Section 2.6) going through 

the identification and structuring of policy objectives (Section 2.2), the definition of 

assessment criteria (Section 2.3), the assessment of drivers and pressures (Section 2.4) and 

the causal relationships between biodiversity, ecosystem functions (EF), and ESS (Section 2.5).  

1.4.1  Open questions to be assessed throughout the project 

The practical application of the AF should shed light on a number of questions (this list is not 

comprehensive): 

 What are the most relevant drivers affecting aquatic ecosystems? How can the demand for 

ESS be compared against the ability of aquatic ecosystems to deliver services in a 

sustainable way? 

 Are there alternative definitions of drivers and pressures depending on whether the 

anchorage is on science or policy? 

 How to move from descriptive to more analytical approaches, given the challenge of 

having an abundance of information to fill into the different layers but relatively scarce 

amount of information to understand links between drivers and pressures. 

 To what extent can knowledge on biodiversity loss drivers and indicators be adapted, 

downscaled and made useful for specific applied assessments (i.e., case studies)? 

 How could one adddress the connection between the analysis of drivers and pressures 

and the ecological assessment of links between ecosystem functions and services and 

biodiversity through the assessment of changes in the state of aquatic ecosystem?  

 How to go beyond the emphasis on indicators (and the constraints of modelling efforts) 

to analyse causal links between biodiversity and ESS delivery?  

 Could a convincing storyline about those links (drivers, pressures, biodiversity, ESS, etc.) 

be built with no evidence about said links? Should this approach be caveated? 

 How could the application of the AF shed light on the critical differences between 

causality and correlation, prediction and forecasting, statistical analysis and scientific 

knowledge? How can we move from predictive models towards decision-support tools 

measuring uncertainty? 
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 Could the outcomes of the analysis of the above-mentioned causal links be used to 

actually assess the effectiveness of policy options regarding biodiversity?  

 How are existing models able to incorporate (if at all) EBM? 

1.4.2  Several knowledge gaps  

It is often overlooked that the adaptive potential of SES is essentially a constructive process, 

sometimes yielding persistent structures through processes of self-organisation, with the 

outcomes potentially uncertain and influenced by path dependence, including initial 

conditions. Aquatic ecosystems hence may exhibit alternative stable states, which suggests 

that the emphasis of the assessment should fall upon the robustness and resilience of 

particular configurations, and the potential for sudden shifts (including irreversible events). 

The interplay between processes on different spatial, temporal and organisational scales, 

central to the remit of AQUACROSS, is also key to deal with CAS. This includes the emergence 

of regular patterns, the potential for regime shifts, and conflicts that arise between drivers of 

ecosystem change and the actual outcomes of pressures stemming from those drivers. 

It is important to highlight that the emphasis should be on management-driven assessment 

outputs. This entails the need to address upscaling issues, as well moving from the local to 

the global dimensions of biodiversity targets, and from the short term to the long term.  

Significant progress has been driven by interdisciplinary research in the past (and also within 

the AQUACROSS consortium). This creates good conditions to better understand critical 

phenomena and thresholds and the emergence of macroscale structure from microscale 

interactions. Yet, this remains a major challenge. So is the analysis of non-linear dynamics 

and stochasticity or the understanding of tipping points or the operationalisation of resilience 

of SES to external perturbations.   

Clear knowledge gaps apply to the understanding of the inherent trade-offs between 

different social-ecological strategies. This AF will try to address these issues on the basis of 

illustrations provided by the different case studies.  
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2   Part II. How To Assess 

2.1 Framing the decision context: baseline 

scenarios 

Co-lead authors: Carlos M. Gómez (UAH & IMDEA), Gonzalo Delacámara (IMDEA); Simone D. Langhans, 
Sami Domisch, Sonja Jähnig, Virgilio Hermoso (FVB-IGB)  

Main contributors: Romina Martin, Maja Schlüter (SRC); Nele sSchuwirth (EAWAG); Javier Martínez-López 
(BC3); GerJan Piet (WUR) 

2.1.1  Introduction: why scenarios are critical 

This first chapter of Part II of the AF mainly focuses on the two objectives mentioned in 

Section 1.3.3 above: representing the system on one side and setting the decision context on 

the other. 

This section briefly discusses the use of qualitative and quantitative scenarios to assess 

trends in aquatic ecosystems both in terms of drivers and multiple pressures, and also 

impacts (i.e., changes in the ecological status) and responses. 

When building such scenarios, a number of major shortcomings arise: 

 For instance, regarding marine ecosystems, the absence of scenarios that assess the 

combined impacts of a changing climate, land-based drivers and pressures, offshore 

drivers and pressures, and overall socio-economic factors affecting the marine 

environment.  

 Additionally, in marine ecosystems, the embrionary status of marine spatial planning 

issues, hence leading to lack of good datasets for spatial analysis.  

 Overall, the lack of quantitative scenarios dealing with the link between drivers and 

pressures and the ecological status of aquatic ecosystems (including causal links between 

biodiversity levels and delivery of ESS and abiotic outputs). 

 The fragmented approach to the freshwater-coastal-marine continuum, hindering the 

possibility of a more complex (i.e., realistic) approach. 

 The weak consideration of governance and economic incentives in prospective efforts.  

To address the needs of a broader audience (such as that targeted by AQUACROSS), which is 

too often unaware of aquatic ecosystems and their policy challenges, the scenarios may need 

to be more comprehensive than previous scenarios, as well as covering basic issues related to 

the good ecological or environmental status of the different aquatic realms.  
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The rationale for a long-term perspective lies in the need to take account of the slow 

unfolding of aquatic ecosystems and socio-economic processes and the necessary time for 

responses (e.g, Marine Protected Areas (MPAs) and other EBM approaches, biodiversity 

conservation target setting, marine spatial planning, etc.) to yield efficient, equitable, and 

sustainable outcomes.  

This does not preclude at all the challenges to be faced when developing such a long-term 

perspective. As above, one may feel tempted to use forecasting techniques to estimate 

different futures for European aquatic ecosystems. Yet, although forecasts may be reliable in 

the short run, they would become more uncertain as the time span of the assessment 

expands. 

Forecasts necessarily contain a fundamental uncertainty, based on our bounded 

understanding of social and ecological processes and the fact that aquatic ecosystems are 

inherently complex dynamic systems. In addition, there is also the fact that the future of 

these aquatic ecosystems largely depends on human decisions. Building scenarios is 

essentially a response to these uncertainties. A scenario is much more than delivering 

projections, forecasts or predictions (i.e., estimates) (see Figure 1). Scenarios should include 

a storyline (a hypothetical sequence of events) with a logical narrative about the way all the 

events in relevant SES may unfold to focus attention on causal processes and decision points. 

Figure 1: The trade-off between uncertainty and complexity in forecasting 

Source: Heinrichs et al., 2010 

It is important to emphasise, though, that scenarios should avoid determinism. If depicting 

the future, it is because of the belief that things can be changed, that there is leeway for 

policy-making and social participation to actually make a difference.  

Inherent to EU and global biodiversity policy is the consideration of different milestones: the 

current situation, 2020 (EU Biodiversity Strategy targets, Aichi targets) and 2030 (Sustainable 

Development Goals – Agenda 2030). However, in fact there are two main scenarios involved: 
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a baseline scenario (based on practice as usual) and a scenario based on actions or responses 

towards sustainability (conservation policy, changes in sectoral policies, re-design of 

incentives, implementation of EBM approaches, etc.).  

Please note that the definition of the current situation, though, may sometimes be 

misleading. What is actually needed is a baseline scenario. A baseline scenario is not 

necessarily equivalent to a scenario (only) describing the current situation but rather the 

trend if there is no action (towards 2020 and 2030). In other words, it is not what is 

happening today, which is just part of the story, but rather what would happen if the different 

drivers exert pressures over European aquatic ecosystems following a specific trend, a 

pathway from today to 2020 and 2030, which is what is to be assessed.  

As a result of that, AQUACROSS will not show the “before vs. after” comparison but rather 

how sustainable policy as per aquatic ecosystems would move trends away from a baseline 

scenario (i.e., what would happen otherwise in terms of pressures and impacts – this explains 

why this is sometimes called “business as usual” or BAU scenario).  

It is clear, though, that there are several dimensions that constrain the baseline scenario. 

These dimensions do not necessarily imply causal assumptions; rather, they are descriptors 

of the most important attributes of the futures to be analysed. In other words, whilst 

assessing the different driving factors of pressures over aquatic ecosystems (see Section 2.4), 

one may have already noticed that the evolution of many of them is contingent on the overall 

economic outlook (sluggish economic growth, fiscal consolidation policies, debt crises, 

bailouts, weak domestic consumption, etc.) in a number of EU countries. As such, economic 

growth, social perception of progress, environmental awareness, etc. are critical dimensions 

that condition each driver, to a larger or lesser extent, in each country of this project. These 

dimensions frame the assessment of drivers but cannot be changed at all by conservation 

policies.  

When assessing drivers, some of them may seem somewhat invariant, following a steady 

evolution over the next 15 years. Others may entail critical uncertainties throughout that 

same period. Whatever the case, it is crucial to add clarity as per any assumptions made.  

It is also critical to bear in mind that any projection is subject to change in its basic 

assumptions. It is often said that long-term forecasts are always false or that the further into 

the future you look, the less you see. Both statements seem to hold true but forecasting is 

nevertheless unavoidable. Be it either explicit or implicit, forecasting is a need. No explicit 

forecast is implicitly equivalent to accepting the status quo. In other words, long-term 

forecasts might be false but perhaps less false than accepting that nothing would change. In 

fact, what a baseline scenario portends is that things will change, if not necessarily in the 

desired way. AQUACROSS implicitly emerges from the belief that current trends of drivers and 

pressures over aquatic ecoxystems are clearly detrimental and unsustainable. In other words, 

AQUACROSS should be able to convey the transition from ‘crisis’ to ‘vision’.  

Although an endless number of foreseeable futures might be explored within AQUACROSS, 

scenarios are certainly more powerful (and effective in terms of dissemination) when 

presented as a small set with clear differences. 
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2.1.2  Building scenarios: making the AQUACROSS Architecture 

operational 

If the general objectives of building a baseline scenario and policy scenarios are to represent 

the social-ecological interactions and the policy challenges and options in a particular 

situation or case study, the specific objectives of making the AQUACROSS Architecture (see 

below) operational and building a baseline scenario are as follows: 

 Building a shared view of current trends and vulnerabilities as per ecosystems and 

biodiversity, with a special focus on the economic and institutional failures that must be 

addressed in the social system and the evaluation of non-linear feedback loops, critical 

thresholds and the existing risk or hysteresis, as well as irreversible regime shifts. 

 Integrating diverse disciplines over the wide spectrum of natural and social sciences that 

have different concepts, definitions, methods, assessment criteria, analytical models and 

research programmes into a comprehensive framework to make the different pieces of 

knowledge suitable to serve a common social purpose. 

 Harmonising and integrating concepts and metrics across different scales throughout 

time, space, ecological organisational levels, and policy domains. This improved 

communication is expected to help overcome knowledge and institutional barriers, to 

facilitate the identification of new opportunities linked to EBM approaches and to foster 

the cooperation amongst stakeholders and policy areas that is required to take advantage 

of synergies and co-benefits associated with the enhancement and protection of 

ecosystems and their biodiversity across different aquatic realms. 

 Representing the outcome of cumulative pressures over biodiversity and ecosystems as a 

means to confront stakeholders and make them aware of the consequences of their own 

decisions. This is expected to result in a much better understanding of impacts over 

ecosystem structures and functions and of the ensuing detrimental effects on human 

wellbeing. This comprehensive analysis would contribute to increase the visibility of the 

opportunity costs of ecosystem degradation and biodiversity decline along with the 

benefits of their preservation. 

 Supporting the identification of well-defined targets in terms of biodiversity, ecosystem 

services, functions and structures, and the development of adequate information and 

decision systems to support their achievement in a cost-effective, efficient and equitable 

manner (see Section 2.2 on policy objectives below). 

 Providing a framework to represent and convey uncertainty over scientific knowledge, the 

foreseeable dynamics of SES and the impact of individual and collective policy responses 

(see Section 2.6.2 on uncertainty). 

These objectives are vast and perhaps not within the reach of existing knowledge even for 

well-defined case studies as the ones considered in AQUACROSS. The diversity of scientific 

perspectives involved has led to fragmented pieces of knowledge that limit our ability to 

understand the relevant social-ecological linkages. As explained in the AQUACROSS concept 
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(Gómez et al., 2016), stakeholders and governments are doomed to make decisions with 

incomplete and imperfect information. Yet, the right methodological approach is definitely 

not about waiting until a better knowledge base is available, but rather about conveying the 

best available knowledge to the policy arena to generate the positive feedback loops that may 

improve current environmental responses and drive a new research agenda.  

As above, baseline scenarios are not (or not only) representations or predictions of the future. 

Uncertainties over drivers of ecosystem change and on how social and ecological systems will 

adapt make the future unpredictable to a very large extent. Nevertheless, scenarios based on 

data and models are tools to: ascertain the mechanisms and pathways that have led to 

current policy challenges, to understand the functioning of SES, to synthesise a wide range of 

information, to assess the effectiveness of policy responses and to provide insights to 

consider situations relevant for policy-making, such as what the state of biodiversity will be if 

no action is taken to halt current degradation trends. In other words, what would happen if 

we insist on traditional policy approaches or if EBM approaches are not sufficiently 

implemented? 

While data and science are the basis for understanding particular layers and processes of this 

analysis, the effective uptake of this knowledge by stakeholders requires finding suitable 

communication tools able to factor in the stylised facts provided by science into meaningful 

narratives and storylines. These narratives are an integral part of the baseline scenario as 

they allow the integration of the different processes taking place at the SES into a common 

and eventually shared representation of policy problems. 
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Box 2: Examples of scenarios for reaching biodiversity targets  

a) Examples of the use of scenarios and models in agenda setting, policy design and policy implementation relating 

to the achievement of biodiversity targets across a range of spatial scales. The diagram indicates the typical 

relationships between spatial scale (top arrows), type of science-policy interface (upper set of arrows at bottom), 

phase of the policy cycle (middle set of arrows at bottom) and type of scenarios used (lower set of arrows at 

bottom): 

 

 

b) Influence of human use on biodiversity: the present situation vs the target situation under WFD and HD: 

 

 

Source: a) IPBES, 2016, p. 21; b) Schneiders et al., 2011 
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2.1.3  Co-building baseline and policy scenarios to progress 

towards ecosystem-based management 

As above, the AQUACROSS EBM approach is to be primarily driven by policy objectives (see 

Section 2.2). Yet, overcoming current practice and advancing towards the implementation of 

holistic and integrated EBM responses is very demanding in terms of science and policy (see 

Section 1.3.3).  

The holistic approach adopted in AQUACROSS requires building comprehensive and complex 

scenarios able to represent the problem (as in the baseline scenario) and the alternative 

potential solutions (as in the management scenario). As a result of this holistic nature and 

complexities entailed in this assessment, there is neither a ‘universal’ EBM approach nor only 

one EBM implementation path to such complex problems, and adding scientific knowledge 

may well not necessarily close prevailing knowledge gaps (e.g., Espinosa-Romero et al., 

2011; Dankel et al., 2012).  

Therefore, to guide this process we recommend a consideration of the “interaction triangle” 

(Röckmann et al., 2015) representing the interaction pathways between science decision-

makers and other stakeholder groups (Figure 2). 

Figure 2: ‘Interaction triangle’ 

 

Source: Röckmann et al., op. cit. 
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Within AQUACROSS, EBM is supposed to be grounded on the best ‘knowledge base’ (FAO, 

1995; Tallis et al., 2010; Fanning et al., 2011). As represented in the lower left corner of the 

above diagram the role of science is double-edged. On one side it is intended to be relevant 

to decision-making; on the other it is essential for the credibility of social knowledge and for 

the legitimacy of the policy decisions it intends to inform and improve. These interactions are 

handy to develop the three main distinctive features of the science-policy nexus to move 

towards the implementation of EBM: 

 EBM involves a deliberate strategy to increase the salience of science through its direct 

contribution to improve policy-making processes. The role of scientific knowledge is 

determined by what science can offer to policy and by the interaction with policy-makers. 

Three situations can be identified regarding the relative and progressive advance of 

science and its associated potential to inform policy-making: 

o No policy relevance of science: this may occur when the scientific state-of-the-art 

might be too new, too preliminary or too uncertain to be directly applied. This may 

also be the outcome of a strong top-down political process when the practicality of 

science is not fully appreciated. For example, when decision-makers are under 

extreme time pressure to make an urgent decision, thus not being able to wait for up-

to-date scientific inputs.  

o Indirect relevance and interaction with policy: this refers to contexts where scientific 

discovery, while intrinsically relevant, does not directly provide the means for its 

application to management. For instance, while innovative and insightful, early 

environmental risk assessments were unlikely to lead to immediate and direct policy 

change (Mitchell et al., 2006: 309-310). Other cases occur when discovery and new 

scientific evidence point towards areas that call for new management actions different 

from current practice. A time lapse can also apply the other way around, i.e. scientists 

becoming interested in and more capable of studying a particular issue, as a reaction 

to management demands (Mitchell et al., 2006).  

o Direct relevance of science for policy: this occurs when the science-policy interaction 

increases the potential for scientific output to be directly applied in decision-making. 

The framing of problems, the co-building of baseline and policy scenarios from the 

onset is crucial to define an applied research question (Röckmann et al., 2012). 

Mitchell et al. (2006) propose lessons that can aid in bridging the gap between 

scientists and decision-makers and making scientific input more salient, e.g.: focus 

on processes and not only (scientific) outputs, acknowledging decision-makers’ 

concerns, perspectives and values, involving other actors, and making use of existing 

networks. 

 Under an EBM approach, science is not only intended to inform and to make technically 

sound decisions but rather act as a means to build a reliable knowledge base through 

interaction between scientists and stakeholders.  

As explained in the AQUACROSS innovative concept, the holistic and complex nature of 

EBM requires different approaches of knowledge production and this entails both 
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quantitative and qualitative approaches. Quantitative methods are desirable and generally 

required, to give precision and to appreciate the breadth and magnitude of uncertainties 

involved both in knowledge and policy. Nevertheless, qualitative approaches are essential 

for scoping and framing, such as determining model boundaries, setting assumptions, 

interpreting results, but also for generating in-depth knowledge about the effects of 

multiple social, political and economic factors.  

In addition to research-based knowledge, traditional community knowledge on 

ecosystem management (Berkes et al., 2000; Huntington, 2000; Anadón et al., 2009) is 

increasingly considered as useful in marine ecosystem management to deal with 

uncertainty, offering “a means to improve research and also to improve resource 

management...” (Huntington 2000:1270). Yet, such evidence-based knowledge cannot be 

easily analysed, compared, or linked to information on a broader scale (Wilson, 2009). 

The spectrum of approaches to knowledge production ranges from single, via multi- and 

inter- to transdisciplinary. 

Regarding the management of complex environmental problems, Haapasaari et al. 

(2012a:1) conclude that the “scientific knowledge base has to be expanded in a more 

holistic direction by incorporating social and economic issues” in addition to the natural 

science basis. A review on marine and coastal research “argues that theories and 

methods should conform to a perspective that ocean management is a societal activity 

with diverse goals ideally informed by interdisciplinary information” (Christie, 2011:172). 

A ‘novel’ EBM approach therefore increasingly (but not always) requires a move from 

single- towards inter- and trans-disciplinary approaches (Haapasaari et al., 2012a; 

Phillipson and Symes, 2012). 

 

 The EBM approach promoted by AQUACROSS considers the science-policy link of upmost 

importance for the legitimacy in the participatory processes. The co-building of baselines 

and policy scenarios, and the full policy-making process, through increasingly better 

informed stakeholder involvement can strengthen democratic cultures and processes 

(Webler and Renn, 1995), bring additional knowledge and values into decision-making in 

order to make better decisions (Badalamenti et al., 2000; Renn, 2008), provide greater 

legitimacy (Raakjaer and Vedsmand, 1995; Raakjaer and Mathiesen, 2003), increase trust 

(Renn and Levine, 1991; Munton, 2003; Luoma and Löfstedt, 2007; de Vos and Mol, 

2010; Young et al., 2013), enhance compliance (Jentoft, 2000; Christie et al., 2009; 

Christie, 2011), and reduce the intensity of conflict (Young et al., 2013).  

A knowledge based decision-making process can result in increased management 

efficiency, equity, sustainability, reduction of administration and enforcement costs 

(Raakjaer and Vedsmand, 1995), making management not only more legitimate, salient 

or credible, but also enforceable and realistic (Fiorino, 1990; van der Sluijs, 2002; Craye 

et al., 2005; Leslie and McLeod, 2007; Renn, 2008; Wilson, 2009; Tallis et al., 2010; de 

Vos and van Tatenhove, 2011; van der Sluijs, 2012). A gamut of interaction between 

decision-makers and stakeholders was described as “gradations of citizen participation” 

identifying a “typology of eight levels of participation” (Arnstein, 1969:217). The bottom 
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rungs describe levels of “non-participation”, meaning “not to enable people to participate 

in planning or conducting programs, but to enable power holders to ‘educate’ or ‘cure’ 

the participants”.  

A bit higher up in the ladder, the levels of informing and consultation allow participants 

“to hear and to have a voice”; however, participants “lack the power to ensure that their 

views will be heeded”. The top levels of the ladder “are levels of citizen power with 

increasing degrees of decision-making clout”. This continuum thus assigns different 

roles and responsibilities to the managers and to those being managed. Neither top-

down government centralistic management, nor bottom-up self-management is 

necessarily the best way for natural resources management. The important aspect is to 

be transparent about the roles and responsibilities expected from the involved parties. 

Many have highlighted the importance of early involvement of stakeholders, i.e. in the 

problem framing/ scoping phase of a participatory process (Dreyer and Renn, 2011; 

Haapasaari et al., 2012b; Röckmann et al., 2012). Stakeholders’ roles in the process 

should be clarified (Ferreyra and Beard 2007; Mostert et al., 2007; Young et al., 2013), 

and “a common vision including the objectives for marine EBM” should be defined (Leslie 

and McLeod, 2007:542; Fanning et al., 2011). Clarity and transparency can help to 

prevent misunderstanding. 

2.1.4  The baseline scenario: representing the social-ecological 

system as a whole 

The AQUACROSS Architecture stands for the methodological approach to build up a baseline 

scenario. That is to say, the whole heuristics that allows us to integrate and synthesise 

scientific knowledge in a fashion that is familiar to stakeholders and managers and that is 

suitable to inform EBM approaches to jointly manage complex SES.  

These Heuristics of the project (see below) are oriented towards management. Beyond taking 

stock of existing knowledge and representing the state-of-the-art, it aims at mobilising 

scientific knowledge to improve social capacities in order to provide better responses to 

ecosystems and biodiversity management challenges. 

In practical terms, the AQUACROSS Architecture aims at mobilising knowledge to (i), confront 

stakeholders and institutions with the outcomes of their current decisions and, (ii) support 

collective decision-making to integrally manage ecosystems by comparing and assessing 

alternative courses of action.  

Along these lines, the main methodological challenge to realise the first general objective 

consists in making a holistic approach truly operational through the identification, effective 

design and successful implementation of EBM approaches to respond to the challenges of 

biodiversity across freshwater, coastal and marine ecosystems.  
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Figure 3: The AQUACROSS Architecture 

 

Source: Gómez et al., 2016 

 

From an analytical point of view the whole AQUACROSS Architecture can be disentangled into 

two separated but closely related sets of linkages or interactions: 

 On the one hand, we can analyse the detrimental consequences over the ecosystem that 

result from the satisfaction of multiple demands of services provided by nature to 

society. This is the demand side of the AQUACROSS Architecture, represented by yellow 

arrows in Figure 3 and showing how the demand and use of naturally provided services is 

an outcome of social processes, including markets and governing institutions, and 

determined by multiple factors (such as population and economic growth, climate 

change, technology development, etc.). These demands of services such as freshwater, 

minerals, fish biomass, water security or pollution control, etc., and the way they are met 

(through water impoundment, trawling, deep sea mining, dredging, drilling, etc.) result in 

pressures over ecosystems and further changes in their structure. This demand side is 

explored in Section 2.4 of this document. 

 On the other hand, we can analyse the potential of ecosystems to continue providing 

ecosystems services on which human life, the social system and the ecological system 
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itself depend, and how all this affects human wellbeing. This is the supply side of the 

AQUACROSS Architecture, represented by green arrows linking ecological and social 

processes. This analysis allows understanding the functioning of ecosystems and how 

changes, induced by human actions, are linked to human welfare and sustainability. This 

supply side is explored in Section 2.5 of this document. 

The supply and the demand sides of the analysis are linked to one another through complex 

adaptive processes taking place in the social and the biophysical systems (see Figure 3). On 

the social side, these processes include climate and land use change adaptation, institutional 

development, technical innovations and other social processes that are increasingly shaped 

by contemporary environmental challenges. On the ecological side this includes adaptive 

processes such as biodiversity depletion, non-indigenous and invasive species, ecological 

tipping points, etc. and other changes increasingly moulded by the influence of social 

decisions. 

Box 3: Lessons from scenarios on invasive species on islands  

Understanding the system: 

Islands and their respective terrestrial and aquatic ecosystems are highly diverse and host approximately 20% of all 

known species. Given their small size and fragile ecosystems, islands and their unique biodiversity have been 

disproportionately impacted by invasive species with consequent environmental, economic and social effects. 

Invasive species can have practically irreversible consequences by changing abiotic and biotic factors within 

ecosystems and plant/animal communities. Multiple invasive species in a system can increase the complexity of 

management efforts and may facilitate trophic cascades that fundamentally alter ecosystem structure and 

functioning. 

Uncertainty around rates of introduction, establishment, inter-species interactions and a range of climate scenarios 

present difficulties in forecasting the full complexity of invasive species potential impacts on island ecosystems. 

The tipping point for invasive species’ impacts on islands is likely at the stage shifting from their establishment to 

spread, whereas the critical point for managing impacts is preventing the introduction in the first instance (i.e., 

pre-border or at border quarantine) or eradicating them soon after their introduction. 

Setting policy priorities and opportunities: 

Given their isolation and size, islands can provide an ideal environment for the development and application of 

biosecurity measures and management techniques. The majority of successful invasive species eradications have 

been on islands. 

Efforts to prevent introductions and manage the spread of invasive species are inherently exercises in uncertainty, 

which can benefit from improved modelling, use of risk assessment and better data. Support for biosecurity 

policies and invasive species management in islands is likely a sound investment for protecting unique and 

abundant biodiversity and key ESS. 

Source: Leadley et al., 2010 
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2.1.5  Framing the decision context 

The second general objective consists in developing a management framework by applying 

the above-mentioned Architecture so as to fulfil the following decision-support objectives:  

 Framing management challenges (such as decline in biodiversity and fish populations) 

within precise ecological (geographical area, relevant ecological processes, etc.) and 

institutional boundaries (stakeholders, regulations in place, property rights, development 

trends, etc.). 

 Identifying and agreeing on management objectives, considering primary EBM objectives 

as well as ulterior objectives within the SES (see Section 2.2 below).  

 Identifying opportunities and barriers linked to alternative ways to pursue management 

objectives (such as synergies among policy domains, opportunities linked to reinforced 

ecological processes, barriers linked to crowding out or rebound effects, co-benefits, 

forward and backward linkages, etc.). 

 Evaluating gaps and deficits in the ecosystems’ structures and functions as well as in 

social institutions and capacities that need to be bridged in order to pave the way for the 

feasibility of management objectives. 

 Assessing available alternatives to cope with management challenges in terms of cost-

effectiveness, cost-benefit analysis, multi-criteria decision and other relevant 

methodologies to assess policy alternatives with effectiveness, efficiency, fairness, 

legitimacy and other socially and environmentally relevant criteria. 

 Developing management-oriented indicators to support the assessment of challenges, 

objectives, policy options, etc. and guaranteeing the standardisation of definitions and 

metrics to make both the assessment and comparisons relevant for management. 

 Conveying evidence-based information relevant to policy-making in such a way that can 

be understood and used by stakeholders to screen out policy alternatives and understand 

the foreseeable consequences of the different courses of action (including business as 

usual and management scenarios). 

 Supporting the construction of a shared understanding of foreseeable consequences and 

the uncertainties linked to the different management alternatives as well as reinforcing 

collective decision-making in the face of uncertain outcomes. 

Framing the policy question requires looking at all components of the SES. Nevertheless, we 

will focus primarily on ongoing processes that result in detrimental consequences for 

biodiversity and aquatic ecosystems, hence having a negative impact over ecosystems and 

the services people get from them. Along these lines socially-relevant ecological processes 

are the primary concern of AQUACROSS. Thus the first step to set the policy problem consists 

in defining the degradation processes taking place in the ecological system. Defining a policy 

challenge within this context is equivalent to describing and representing that degradation 

taking place in the ecosystem (i.e., proliferation of invasive species, overfishing, water 
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scarcity, exposure to floods, etc.) but also defining why this problem is relevant for human 

welfare (representing, for example, foregone benefits, welfare losses due to a lower provision 

of critical ecosystems services, increased risk of a regime shift after an extreme event, etc.).  

The primary focus on environmental problems does not mean that the social system is not 

relevant to define the policy challenge, or that actions must be limited to restore the 

environment. In fact, causes of ecological degradation are to be found in the social system 

(as those ecological degradation processes are driven by market and/or institutional failures) 

and its reform is a prerequisite to restore the sustainability of the whole SES.  

Explaining ecological problems is equivalent to elucidating the social drivers of ecosystem 

change. Also how these drivers are translated into pressures over ecosystems, result in 

changes in the way these systems function,  particularly in their potential to continue 

providing ESS, which clearly has impacts over human welfare triggering responses that 

sometimes are not adequate. 

Thus reshaping the social system in order to be able to respond to the sustainability 

challenge is an integral part of the policy response. This reform is inspired by the need to 

build institutional capabilities to take advantage of the opportunities linked to implementing 

EBM approaches (such as cooperation to take advantage of synergies and sorting trade-offs 

out, etc.) so as to enhance the sustainability of the whole system. 

2.1.6  The baseline scenario: where to look at to identify policy 

challenges 

One relevant working hypothesis of AQUACROSS is that prevailing best practice consists in 

optimising the delivery of particular ESS (food, water, energy, safety, etc.) and seeks to 

maximise the production of specific components of the system (such as water quantity or fish 

biomass), through controlling others (water storage, flood risk, etc.), at a limited scale 

(mostly local), and for a limited time frame (mostly in the short term). This practice sets aside 

or assumes no changes in the functions and structure of ecosystems on broader spatial 

scales and through the medium and long term (Walker and Salt, 2006; Levin, and al., 2013). 

This basic idea provides the key for searching both management problems and opportunities 

for improvement. 

A second important hypothesis is that economic (and decision-support) models that do not 

consider complex adaptive natural and social systems may well lead to socially and 

environmentally undesirable outcomes. Despite what optimal resources management models 

may suggest, dynamic systems cannot stay steadily in an ideal optimal status chosen to 

deliver maximum sustainable yields of fish, freshwater or wood, just to mention a few 

examples. Furthermore, ecosystems and natural resources are by any means not only 

affected by single disturbances, such as extraction rates or pollution loads, but rather by 

disturbance regimes represented by the pattern and dynamics of disturbances that shape the 

ecosystem itself in the long term (see Pickett and White, 1985).  
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Although minor changes in complex systems are often linear and incremental, ecosystems 

are only stable within critical thresholds and might change into alternative stable states due 

to disturbance regimes (Beisner et al., 2003). Permanent disturbances and extreme events 

such as droughts or floods, storm surges, etc. are able to reorganise system properties and 

affect biodiversity. For instance, different studies of aquatic, forest and other ecosystems 

show that smooth changes can trigger sudden variations in regimes and lead to the 

irreversible loss of ESS (Scheffer et al., 2001). Similarly, minor changes in sediment transport 

may trigger a catastrophic drift of stream invertebrates (Gibbins et al., 2007). Surprises, such 

as silting, dead zones in river mouths, fisheries collapse, etc. make visible the drawbacks of 

traditional approaches and prompt for alternative methodological approaches such as the 

one proposed in AQUACROSS. Therefore, identifying slow variables, or on-going degradation 

processes such as sedimentation, siltation, invasive species colonisation, water scarcity, etc. 

and asking for the possibility of regime shifts in the face of extreme events is in many cases 

an important step to define the policy challenges at stake. 

Box 4: A working example: Stepwise application of the AQUACROSS concept to 

explore major linkages, identify research needs and policy challenges 

1-2. The lagoon area from the Vouga river supports 

multiple services, some of them uniquely connected to 

the special saltmarsh habitat. Commercial and 

recreational fisheries traditionally contribute to local 

residents well-being; however, the economic crisis 

emphasised these activities’ importance for 

complementing staple food beyond the legal quotas. 

Furthermore, the different marsh types contribute to 

mediation of waste and toxics from inland freshwaters 

and regulate a unique habitat suitable for a variety of 

birds also attracting tourists. 

3. At regional level, participatory meetings are held to 

present current state and plan of activities for the 

catchment area and lagoon (river basin management 

plans, WFD) and at the coastal level (coastal zone spatial 

planning and seashore protection), which are discussed by different stakeholders and the general public (that 

wishes to participate in the meetings). Examples of conflicts are recreational fishing and hunting within touristic 

activities, both in the role of provisioning and cultural services. 

4. Multiple drivers affect the region, both from outside, such as the economic crisis, but also from inside, where a 

lack of coordination between different interest groups, such as among the harbour business and fishing activities, 

leaves several conflicts unresolved. 

5. That is why sectoral interests were pushed for in the past with, for instance, dredging activities in the harbour 

region, which heavily affects the hydrological system of the lagoon area. 

6. Dredging changes velocity of water in the lagoon together with an increase of salinity and reduces marsh 

habitats.   

7-8. It is yet to be investigated how the saltmarsh habitat is expected to change under the ongoing pressures and 

how this translates into important functions, such as nursery areas for commercially valuable fish. 
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2.1.7  Integration of resilience principles in building the baseline 

To disentangle the complexity of reaching multiple biodiversity targets and ensuring a 

diverse set of ESS in SES, resilience thinking supports the construction process of the 

baseline. Seven generic principles were described for enhancing the resilience of ESS, i.e. the 

capacity of a SES to sustain a desired set of ESS in the face of disturbance and ongoing 

change (Schlüter et al., 2015). Two particularly important principles for building the baseline 

for a specific case according to the AQUACROSS Architecture are complex adaptive systems 

thinking (P4-CAS) and slow variables and feedbacks (P3) (see Schlüter et al., op. cit. for an 

overvirew of the 7 principles).  

CAS are made up of many interacting components that are individually and collectively 

adapting to change, enabling them to self-organise and evolve, often yielding emergent 

properties at different scales (Norberg and Cumming, 2008). Complex adaptive systems may 

shift between alternative regimes, often abruptly and irreversibly (Scheffer et al., 2001). 

Identifying suitable system boundaries that integrate not only the main interacting 

components but also the leverage points for management to induce a desired change for 

improving biodiversity targets and ESS provision is crucial to design the baseline. 

Feedbacks occur when a change in a particular variable, process or signal leads to changes in 

other variables that eventually loop back to affect the original variable, process or signal. 

Slow variables are variables that change on time scales that are much slower than 

conventional time scales. Slow variables can mask feedbacks while driving the system 

towards a threshold (e.g., phosphorous accumulation in lake sediments). Since these 

processes act at multiple scales, it is relevant for the baseline to identify them before 

entering the individual linkages of the AQUACROSS architecture. 

A challenge in applying those principles for a particular case lies in their interrelation since 

any of the principles in isolation rarely leads to an overall, enhanced resilience of ESS. 

However, three key mechanisms of their interrelation could be identified (see Schlüter et al., 

2015): 

1 “Increasing understanding of critical SES (social-ecological system) components and 

processes (P3-Slow variables & feedbacks, P4-CAS thinking, P5-Learning) as well as 

suitable management options (P5- Learning, P6–Participation, P7-Polycentricity).  

2 Preparing the SES for unexpected events by creating awareness of their likelihood (P4- 

CAS thinking), and providing alternative approaches and ways of dealing with emergent 

issues when suddenly needed (P1-Diversity, P7-Polycentricity), and 

3 Enhancing response capacity by providing a diversity of response options (P1-Diversity), 

building the trust needed to make decisions and take action (P6-Participation), and 

providing ways to make use of different responses at the right scale (P2-Connectivity, P5 

- Participation, P6-Learning, P7-Polycentricity).” 

Complex interactions in SES make it challenging to isolate a particular system property or 

principle (e.g., diversity) and to establish its connection to the resilience of ESS. Unravelling 
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the different principles is more of an analytical construct than a reflection of individual, 

discrete factors operating within a SES. Even if the effect of a particular principle is known, 

the fact that SES continually evolve and change over time implies that these causal links may 

also change (Schlüter et al., 2015). At a practical level, the relevant system processes often 

happen over long timescales, which make it difficult to assess the effect of a principle within 

the time frame of a typical empirical study or management experiment. Furthermore, the 

indicators needed to monitor long-term, nonlinear, and variable change are generally not 

well developed and in some cases may require non-traditional methods and ways of thinking 

in their assessment (Moss et al., 2010; Halpern and Fujita, 2013). 

It is of paramount importance to note that none of the principles are either necessary or 

sufficient, or a panacea for environmental governance. Applying these principles involves 

viewing them not as end goals but rather as processes or mechanisms to create the right 

conditions that allow for resolving collective action problems associated with multiple trade-

offs (Schlüter et al., 2015). One approach to unveil those trade-offs and identify useful 

resilience principles for improving overall ESS governance is to look into how particular 

services are co-produced and interact with each other. 

Management strategy evaluation (MSE) was first conceived as part of (marine) fisheries 

management and involves simulation to compare the relative effectiveness for achieving 

management objectives of different combinations of data collection schemes, methods of 

analysis and subsequent processes leading to management actions. MSE can be used to 

identify a ‘best’ management strategy among a set of candidate strategies, or to determine 

how well an existing strategy performs (Punt et al., 2016). MSE (i.e., the evaluation of 

management strategies using simulation) is widely considered to be the most appropriate 

way to evaluate the trade-offs achieved by alternative management strategies and to assess 

the consequences of uncertainty for achieving management goals. MSE overcomes many of 

the concerns with any of the traditional approaches, including that the full range of 

uncertainty can be taken into account and decision-makers may consider longer-term trade-

offs among management objectives, instead of focusing on short-term considerations only. 

As this links to several of the EBM principles, MSE can probably be considered the most 

appropriate approach to assess the effectiveness of management. While MSE was mostly 

applied as part of fisheries management it is potentially applicable to any type of resource 

management and the same best practices apply (see Punt et al., 2016). 

2.1.8  Science focus: models and tools for a stepwise building of 

baseline and EBM policy scenarios of biodiversity  

This section describes a full workflow that can, as a whole or parts of which, be applied to 

help operationalise EBM in the different case studies. Figure 4 visualises the individual parts 

of the workflow (a/A to i). Subsections that deal with scenario building, modelling, 

projections, and prioritisations of biodiversity and ESS are elaborated below. Statistical 

relationships among species occurrence data from monitoring campaigns and respective 

information for environmental variables are established (Figure 4a). This relationship is used 
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to model the current species distribution at time (t) = 0. Whether statistical, mechanistic, or 

hybrid models are used to simulate the distribution of a species across the landscape, the 

input data generally consists of the two major data types: species’ geographic occurrence 

data and environmental variables to be associated with their occurrence (Elith and Leathwick, 

2009).  

Over the past decades, there has been a massive increase in publicly available Geographic 

Information System (GIS) data, regarding both species occurrence data and environmental 

data. Although species distribution models as such are not new (see point-based models in 

e.g., RIVPACS that predict the occurrence of a species at a specific location: Moss et al., 

1987), the availability of data over large spatial and temporal extents has pushed the field 

towards being a ‘standard’ assessment tool of the species – environment relationship in 

ecology and biogeography. Originally developed in the terrestrial realm SDMs have been 

successfully adopted for freshwater and marine ecosystems (Robinson et al., 2011; Domisch 

et al., 2015a). 

The choice of the modelling technique – statistical, mechanistic, or hybrid – mainly depends 

on data availability, time frame, and effort of a given study. On the one hand, statistical 

models such as correlative species distribution models, are less data hungry than the 

mechanistic and hybrid counterparts which can often only be accomplished for single species 

or a limited set of species due to the lack of data (e.g., physiological tolerances and 

dynamics, biological interactions), and knowledge of the species’ autecological preferences 

(Morin & Thuiller, 2009). On the other hand, input data in statistical models has to be 

selected very carefully to maintain causality between species and environmental data 

(Dormann et al., 2013). When applied carefully, correlative SDMs have the potential to 

highlight important species-environmental relationships and in case of the application of 

scenarios to show trends in species and community range changes and turnover over large 

spatial extents (the latter, see below; Elith and Leathwick, 2009). 

a. Species occurrence data 

Species occurrence data can be derived from ad-hoc observations or systematic surveys, and 

indicate which species was found at a given geographic location and time.2  

For instance, Domisch et al., (2015a) discussed the key issues to build SDMs in stream 

ecosystems, while Snickars et al., (2014) analysed them from 145 peer-reviewed field-

studies, focused on interaction among predictors and regional effects in coastal waters. Mesa 

et al. (2015) suggested predictive models in marine ecosystems (abundance vs 

presence/absence) based on catches, with conclusions on monitoring and research 

programmes. 

                                           
2 Data sources for freshwater species occurrences are the Global Biodiversity Information Facility, the Freshwater 

Information Platform, fishnet2, country-based monitoring programmes, e.g. according to the European Union Water 

Framework Directive (WFD; 2000/60/EC), and previous EU projects and collaborations such as WISER, STAR, EFI+ etc. 

Likewise, species occurrence data in the marine realm is available in GBIF, Ocean Biogeographic Information System, 

ReefBase and additional long-term monitoring programs from local research institutions. 

http://www.gbif.org/
http://www.freshwaterbiodiversity.eu/
http://www.freshwaterbiodiversity.eu/
http://www.fishnet2.net/aboutFishNet.html
http://iobis.org/
http://www.reefbase.org/global_database/
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Figure 4: Workflow for evaluating alternatives and prioritising conservation and 

ecosystem services (ESS) delivery areas for the application in the AQUACROSS case 

studies  

 

SDM = Species Distribution Model. AS = Action Strategy 

Source: Own elaboration (Simone Langhans, FVB-IGB)  

b. Environmental data 

Compared to the terrestrial realm, the development and availability of high-resolution and 

range-wide environmental data in the freshwater and marine realms has been more recent. 

On the one hand, the difficulty lies in translating remotely sensed data into meaningful 

variables for the specific realm. In freshwaters, for instance, it is crucial to account for the 

stream network and the upstream connectivity, opposed to a specific land use type at one 

location as done in the terrestrial realm (e.g., amount of upstream agricultural area 

influencing the downstream river reaches (Peterson et al., 2013; Kuemmerlen et al., 2014). 

Likewise in marine SDMs, the connectivity needs to be maintained by accounting for ocean 
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currents that are vital to be depicted correctly. Moreover, marine organisms occur in a three-

dimensional space given by the water column. Hence, environmental variables measured at 

the surface may differ from those measured in the water column or at the benthos (Dambach 

and Rödder, 2011). In essence, the freshwater and marine SDMs need to be spatially explicit, 

with additional levels of complexity compared to those applied in the terrestrial realm 

(Robinson et al., 2011; Domisch et al., 2015a). 

c. Sources of environmental data 

To date, there are several global datasets for range-wide environmental data. Regarding 

freshwaters, a variety of environmental data is available, such as the gridded 1km freshwater 

data for rivers and lakes from Domisch et al., 2015b3 that takes into account the upstream 

connectivity, data based on catchment polygons4, environmental characteristics for lakes5, 

wetlands6, reservoirs and dams7 and inland water bodies on a 30m spatial grain8. Moreover, 

continental datasets can provide additional information at a more detailed level, such as the 

European Catchment Characterisation and Modelling (CCM) database9 (de Jager and Vogt, 

2010). Marine datasets with a global and range-wide coverage exist in various spatial and 

temporal coverages and data types, such as temperature, chlorophyll, nutrients, salinity, 

chemistry, and bathymetry. These data are available from the Bio-Oracle dataset 10 , the 

MARSPEC dataset11, and the CMIP5 database12. Moreover, high-resolution bathymetry and sea 

floor topography is available from the SRTM30_PLUS dataset at approx. 1km spatial grain 

dataset13. To obtain a vertical stack and, hence, a 3D structure of the marine environment, 

tidal changes on coastal regions, custom oceanographic models and extrapolations need to 

be considered and included as done, for instance, for the North Sea (Reiss et al., 2011).  

There are, however, challenges in data collection, such as species-level biases in occurrence 

data (Meyer et al., 2016 and references therein) and knowledge gaps and deficiencies in 

marine ecosystems data, that complicate the operational approach (She et al., 2016) also for 

river restoration (Downs et al., 2011), or those related to resolution and scale in coastal study 

cases (Stanev et al., 2016). Rose et al., (2010) discussed end-to-end models that can deal 

with bottom-up and top-down controls that operate simultaneously, vary in time and space 

and are capable of handling the multiple impacts expected under climate change in marine 

ecosystems. 

                                           
3 www.earthenv.org/streams 

4 www.hydrosheds.org: Lehner and Grill, 2013 

5 www.hydrosheds.org/page/hydrolakes: Messager et al. in review 

6 www.worldwildlife.org/pages/global-lakes-and-wetlands-database: Lehner and Doll, 2004 

7 http://atlas.gwsp.org/: Lehner et al., 2011 

8 www.landcover.org/: Feng et al., 2016 

9 http://ccm.jrc.ec.europa.eu/php/index.php?action=view&id=23 

10 approx. 9km spatial grain, www.oracle.ugent.be/: Tyberghein et al., 2012 

11 approx. 1km spatial grain, www.marspec.org: Sbrocco and Barber, 2013 

12 approx. 150 to 300km spatial grain, https://pcmdi.llnl.gov/projects/cmip5/: Taylor et al., 2012 

13 http://topex.ucsd.edu/WWW_html/srtm30_plus.html: Becker et al., 2009 

http://www.earthenv.org/streams
http://www.hydrosheds.org/
http://www.hydrosheds.org/page/hydrolakes
http://www.worldwildlife.org/pages/global-lakes-and-wetlands-database
http://atlas.gwsp.org/
http://www.landcover.org/
http://ccm.jrc.ec.europa.eu/php/index.php?action=view&id=23
http://www.oracle.ugent.be/
http://www.marspec.org/
https://pcmdi.llnl.gov/projects/cmip5/
http://topex.ucsd.edu/WWW_html/srtm30_plus.html
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d. Species distribution models (SDMs) 

Regarding the SDM itself, the methods used across the realms are very similar. SDMs build 

upon a statistical relationship based on species and environmental data. In a first step, the 

species presences (and absences, if available) are analysed in an n-dimensional 

environmental space defining the habitat affinity given the input variables. In a second step, 

this species-habitat relationship can be mapped and projected across the study area, yielding 

a probabilistic habitat suitability map (Elith and Leathwick, 2009). For further analyses, binary 

presence or absence of a species may be required that can be calculated using a threshold or 

cut-off value based on the specific model evaluation and discrimination ability (Allouche et 

al., 2006).  

The choice of the statistical modelling algorithm and method ranges from single algorithms 

(e.g., MaxEnt),  (Phillips and Dudik, 2008) to using an ensemble-modelling framework 

(Araujo and New, 2007), in which multiple algorithms from different classes are combined 

into a consensus prediction (e.g., regression, classification tree, and machine learning 

methods (Thuiller et al., 2009)). Beside the quality of the input data, one of the major sources 

of relative uncertainty has been identified as stemming from the modelling algorithms 

themselves (Diniz-Filho et al., 2009). Hence, ensemble models are able to show the trend 

among various techniques and are, therefore, considered more robust compared to single 

algorithms. Regardless of the choice, the specific settings in each algorithm have to be 

selected carefully (see e.g., Merow et al., 2013, regarding MaxEnt). 

Bayesian techniques are starting to gain more attention in the SDM community because of 

their flexibility in terms of data input and the ability to depict model-based uncertainties 

given the available data (e.g., Latimer et al., 2006). Though such models still require high 

computational power and time, recent advances (such as the hSDM-package in R, Vieilledent 

et al., 2014) have been promising in terms of application and measures of uncertainty in the 

species–environment relationship and, consequently, highlighting areas of uncertain 

predictions as probabilistic distribution maps (Domisch et al., 2016; Wilson and Jetz, 2016). 

e. Scales and uncertainty 

There are several sources of uncertainty in SDMs that need to be addressed for each species 

and study area individually. For the species data, this includes accounting for a geographic 

sampling bias (e.g., political borders, easy-to-access sites are visited more frequently), 

changing sampling campaigns and schemes over time, and a varying detectability of species 

(Lahoz-Monfort et al., 2013). In addition, the spatial and temporal scale of the species data 

has to match those environmental data. For instance, species level data can be aggregated to 

coarser grains (e.g., from point location to a drainage basin), or temporal scales (e.g., pooling 

monthly sampling schemes to a multi-year dataset). However, the cost of such procedures is 

a coarsening of the species-environment relationship, which introduces additional 

uncertainties in model outputs (Lauzeral et al., 2013; Domisch et al., 2015a). For a further 

discussion on scales and uncertainties please refer to Section 2.6. 
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f. Setting policy objectives 

Biodiversity objectives are defined to fulfil the targets set in the respective EU policies (see 

Table 3, Section 2.2) considering local situations and conditions of each CS (Case Study). 

Stakeholders may also want to include additional biodiversity targets for certain species that 

are especially valuable in their region, but are not specifically mentioned in EU policies 

(Figure 4b). By that, two of the seven principles described in Biggs et al. (2012) would be 

implemented which are also thought to help increase resilience: (1) broaden participation, i.e. 

include an adequate number of decision-makers, and (2) maintain diversity, i.e. consider 

decision-makers with different backgrounds (the remaining five being: manage connectivity, 

encourage learning, promote polycentric governance, manage slow variables and feedbacks 

and foster complex, adaptive thinking). Additional opportunities to consider resilience 

thinking are indicated in Figure 4. 

A recent literature review showed how the ecosystem-service perspective is used for setting 

objectives in freshwater and marine habitat conservation (Boulton et al., 2016). 

g. Identifying ecosystem services delivery and demand baselines 

and objectives  

In parallel to defining the baseline biodiversity status and clarifying policy objectives, 

information on ESS delivery and demand for the respective case study are collected (Figure 

4A). The objectives for ESS delivery are defined by stakeholders and/or derived from policies 

(e.g., from the EU Floods Directive [2007/60/EC]; Figure 4B). 

h. Projecting species distributions 

Based on the statistical relationship between species occurrences and range-wide 

environmental variables (see section a above), species probabilistic habitat suitability is 

projected for each scenario (Figure 4d). In general, scenarios stem from a specific storyline, 

and build upon potential future socioeconomic patterns, changes, or advances that are 

translated into potential emissions, CO2 concentrations, and land-cover change. Thus 

regarding the models, scenarios are primarily defined as changes in environmental conditions 

(such as climate change scenarios by the IPCC, 2007), or land cover scenarios (Eitelberg et al., 

2015) including the potential fragmentation of the landscape (Leadley et al., 2010). Typically 

information is available for each spatial unit across the study area, either as a continuous 

(e.g., temperature) or discrete (land cover type) data14.  

 i. Projecting ecosystem services delivery and demand 

ESS delivery and demand are modelled for the same scenarios (Figure 4D). To do so, 

numerous "EBM tools" exist (see https://ebmtoolsdatabase.org/tools) to do so. However, 

most of them represent ecological, hydrologic, or other biophysical process models that lack 

                                           
14 More information regarding climate-change and land cover scenarios and storylines can be found at 

http://tntcat.iiasa.ac.at/RcpDb and http://luh.umd.edu/data.shtml#LUH1_Data, respectively. 

https://ebmtoolsdatabase.org/tools)
http://tntcat.iiasa.ac.at/RcpDb
http://luh.umd.edu/data.shtml#LUH1_Data
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an explicit focus on ESS. The interdisciplinarity required for the study of ESS is best tackled 

using integrated modelling tools that are able to represent the wide variety of interactions 

that happen within SES, such as those based on behaviour, market prices, local versus global 

economy, etc. In this regard, ARIES 15  is a cyber-infrastructure that integrates multiple 

modelling paradigms for spatio-temporal modelling and mapping of ESS, supporting artificial 

intelligence features (semantics and machine learning) for model selection and assemblage to 

quantify ESS flows from ecosystems to beneficiaries (Villa et al., 2014). To map ESS flow and 

model its main elements (source, use and sink regions), ARIES uses Service Path Attribution 

Networks (SPAN = a family of agent-based models) algorithms, which also generate 

probabilistic spatial outputs and, therefore, enable spatial visualisation of uncertainty 

(Johnson et al., 2012); see Section 2.6). ARIES currently comprises nine formalised flow types, 

which serve as a basis for conceptualising flows of other ESS (Villa et al., 2014). As part of 

ARIES, the initial conditions (i.e., prior probabilities gathered from local experts/stakeholders) 

can be modelled using Bayesian Belief Networks (BBNs; Barquín et al., 2015). BBNs capture 

our understanding of the likely cause and effect relationships of multiple influences on a wide 

range of economic, social, cultural and ecological values (Quinn et al., 2013). The ability of 

BBNs to concurrently incorporate information from a variety of sources, i.e. empirical data, 

various types of models, literature and expert opinion, makes them a powerful and flexible 

method for various applications (Stewart-Koster et al., 2010). 

During the last years, ESS mapping tools were moving towards more modelling oriented 

tools. ESS models are computational representations of the environment that allow 

biophysical, ecological, and/or socio-economic characteristics to be quantified and explored. 

When applied to the assessment of ESS, models are important tools that can quantify the 

relationships underpinnig ESS supply, demand, and flows and, in some cases, produce maps 

representing these factors. Furthermore, as models can explore scenarios, trade-offs that 

result from different scenarios can be assessed as well. By means of integrated modelling 

tools, such as ARIES, ESS mapping can be studied in combination with other ecological and 

socio-economic interactions that might exert pressures on ecosystems in order to enable 

EBM approaches. Moreover, in view of ongoing climate change, there is certainly an urgent 

need to integrate the different elements that compose SES (processes, agents, events, etc.) in 

order to enhance governance, understand indirect and non-linear causal links, and to be able 

to predict future scenarios. 

In addition, Guerry et al. (2012) showed inVEST as another tool to assess ESS applied to 

marine ecosystems. 

Some examples that illustrate ESS modelling in aquatic ecosystems are those from Lillebø et 

al. (2016), who applied ESS modelling to case studies in transitional water bodies, Liquete et 

al. (2016a) in Mediterranean marine and coastal ecosystems, and Arkema et al. (2015), who 

showed the importance of stakeholder engagement to set management scenarios in marine 

and coastal ecosystems. 

                                           
15  See http://aries.integratedmodelling.org/ 

http://aries.integratedmodelling.org/)
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j. Identifying biodiversity and ecosystem services deficits. 

Comparing the defined biodiversity targets with the projected species distributions for each 

scenario as well as the projected ESS with the defined ESS targets will help identify 

biodiversity and ESS deficits, respectively (Figure 4e and E). With the deficits laid out, actions 

to improve the situation will then be defined. 

k. Identifying action strategies 

The combined consideration of the actions needed to overcome impacts on biodiversity (or 

protect current biodiversity) and the actions needed to provide the targeted ESS delivery, will 

lead to a set of potential action strategies (Figure 4f). Thereby, resilience has to be taken into 

account in one of two ways: action strategies are either designed to (i) maintain existing 

system resilience or to (ii) re-introduce resilience to a system that has previously lost it due 

to human impacts.  

Generally speaking, foresight tools can help planning for the unpredictable (Cook et al., 

2014), linking biodiversity and ecosystem functioning (BEF) relationship and resilience of 

ecosystem and decision-making (Mori et al., 2013). Some illustrations in aquatic ecosystems 

include those from Baho et al. (2014) showing temporal dynamics, resilience and 

management options in lakes, and from Mamauag et al. (2013) about targeted adaptation 

strategies, vulnerability assessment and resilience of fisheries. France (2016) discussed the 

way to adapt lessons learned from terrestrial ecosystems to marine ecosystems regarding 

resilience and ESS delivery, in management options (restoration) and governance 

management. 

l. Assessing projected biodiversity and ecosystem services delivery 

Species distributions as well as ESS delivery are projected for each of the scenarios x, y and z, 

considering the expected changes that will result from each individual action strategy (Figure 

4g and G). For each scenario, outcomes of the action strategies are assessed according to 

relevant criteria (i.e., effectiveness, efficiency, equity and fairness, policy implementability) 

and ranked for biodiversity and ESS separately, depending on the projected benefits they will 

yield. The highest ranked action strategy for each scenario is marked with a star in Figure 4.  

m. Identifying an optimal action strategy 

These two assessments and a third assessment of the costs of the individual action strategies 

are combined, taking into account stakeholders’ preferences (Figure 4h). Thereby, action 

strategies leading to co-benefits or synergies for biodiversity and ESS, i.e. win-win strategies, 

will be clearly identified as favourable (Figure 4 action strategy 1 in scenario x). An example 

for a win-win action strategy is the widening of a formerly channelized river course and the 

subsequent implementation of gravel bars. Such an action strategy has the potential to 

improve biodiversity (both aquatic and terrestrial) and maintain the river’s water purification 

capacity, i.e. its natural assimilation capacity, among other ESS such as for example an 

improved potential for recreational activities. In case an action strategy is only beneficial for 



 

57 Framing the Decision Context: Baseline Scenario 

certain ESS but has negative impacts for other ESS (especially with provisioning services) or 

biodiversity, trade-offs need to be incorporated when assessing the optimal action strategy 

(Figure 4 scenarios y and z; also see Section 2.6). Co-benefits (also called synergies or win-

win situations) and trade-offs also occur when targeting different ESS at the same time, 

whereby trade-offs are three times more likely to occur (Howe et al., 2014). An example for a 

trade-off among different ESS would be water abstracted for agriculture or human 

consumption. There are three main indications for a potential trade-off situation: (1) when 

private gains are connected to social losses of a natural resource, (2) provisioning ESS are 

involved and (3) if any of the stakeholders is acting exclusively at the local scale. Contrarily, 

there is no generalisable context for a win-win situation (Howe et al., 2014). The degree to 

which the assessment of action strategies and the respective trade-offs is guided by 

stakeholder preferences is case-specific and depends on the defined targets (also see Section 

2.6). In any case, the evaluation process considers uncertainties of the projected outcomes of 

each strategy as well as uncertainties related to the implementation of action strategies 

(idem). For example, a strategy with moderate benefits for biodiversity and ESS provision may 

be assessed as being better suited if it leads to a more robust, i.e. less uncertain outcome, as 

compared to other strategies that potentially have a higher overall benefit but are less 

certain. 

Regarding this assessment, Terrado et al. (2016) suggested a complementary cost-benefit 

analysis (CBA) to the cost-effectiveness analysis (CEA) in River Basin Management Plans 

(RBMP) to include the provision of ESS perspective in decision-making. Illustrations in 

literature showed the way to prioritise cost-effective actions in coastal ecosystems (Giakoumi 

et al., 2015) and trade-offs cost-effective analysis in river restoration at catchment scale 

(Hermoso et al., 2012).  

n. Optimising the spatial allocation of biodiversity conservation 

and ecosystem services delivery areas 

In case of conflicting effects of the action strategy identified as being the optimal one on 

biodiversity conservation/restoration and ecosystem service delivery, the allocation of 

biodiversity conservation/restoration areas and ecosystem service delivery areas may be 

spatially optimised (Figure 4i). Morán-Ordóñez et al. (2015), for example, used spatial zoning 

of agriculture and biodiversity conservation areas to increase agricultural development but 

with a significantly lower impact on biodiversity values and carbon framing than in traditional 

approaches in Australia’s northern savannas. Such a spatially optimised allocation of ESS and 

biodiversity targets can be done using Marxan with Zones16 (Watts et al., 2009), which is an 

extension of the software Marxan (Ball et al., 2009). Marxan solves the so-called minimum-

set problem by selecting pre-defined parcels (i.e., spatial units) of land, river or sea from a 

pool of parcels that together build a conservation network within which pre-defined 

biodiversity targets (e.g., species or habitats) are protected, while minimising the costs of 

these parcels and maximising their spatial connectivity. Besides planning conservation 

                                           
16 http://www.uq.edu.au/marxan/index.html?p=1.1.1 

http://www.uq.edu.au/marxan/index.html?p=1.1.1
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networks, Marxan has also been used to prioritise restoration efforts along rivers or within 

whole catchments (Langhans et al., 2014; Langhans et al., 2016). The major new element in 

Marxan with Zones is allowing any parcel of land, river or sea to be allocated to a specific 

zone, not just protected or unprotected. To each zone, a specific action, objectives and 

constraints can be allocated with the flexibility to define the contribution of each zone to 

achieve targets for pre-specified features (e.g., species or habitats) (Watts et al., 2009). 

Hermoso et al. (in review) used Marxan with Zones to optimise the allocation of freshwater 

biodiversity (139 species of freshwater fish, turtles and waterbirds) and compatible ESS 

(carbon retention and flood prevention by riparian forests and availability of perennial waters) 

in conservation management zones and areas for accessing provisioning services 

(groundwater provision for agriculture and recreational fisheries) in trade-offs zones. In 

doing so, potential trade-offs could be reduced up to 54% (compared to traditional planning), 

while co-benefits were enhanced up to 26%.  

The last step in the full workflow is to monitor the consequences of the implemented, 

spatially optimised action strategy on biodiversity and ESS delivery. The monitoring will 

produce valuable information that can feed back into SDMs and ESS models (Figure 4 a and 

A). It will also help to refine policy targets and potentially educate and reshape decision-

makers’ preferences (Figure 4 b and B), following the concept of adaptive management (e.g., 

(Kingsford et al. 2011). 
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2.2 Identifying objectives and deficits 

Lead authors: Katrina Abhold, Manuel Lago (ECOLOGIC)  

Main contributors: Leonie Robinson, Fiona Culhane (ULIV); Nele Schüwirth, Peter Reichert (EAWAG); Florian 
Pletterbauer (BOKU); António Nogueira, Ana Lillebø (UAVR); Gonzalo Delacámara (IMDEA), Carlos M. Gómez 
(UAH & IMDEA) 

2.2.1  Introduction 

This chapter of the AQUACROSS AF aims at providing insights on how to identify and set 

local-level, measurable objectives for policy action. Accordingly, this chapter covers how to 

structure objectives at different levels, from global and EU policy to regional and local scales 

as well as from abstract, general goals to specific and measurable targets tailored at the local 

level (see Box 5). Examples from the AQUACROSS Case Studies are provided in text boxes and 

tables to illustrate the concepts and steps provided in this chapter (see, for instance, Table 

2).  

As in Section 1.3.5, the definition of objectives builds upon the baseline analysis (see above), 

where the main challenge and the policy context have been set along policy priorities for the 

local level. The operational definition of objectives to assess progress at the local level would 

definitely benefit from the analysis of social drivers of ecosystem change, the resulting 

pressures and the assessment of the current and baseline status of the relevant ecosystems 

(Section 2.4), as well as from the analysis of how all this links to biodiversity and ESS (Section 

2.5).  

The AQUACROSS concept and the previous section stress upon the fact that both levels of 

objectives (global and local) refer to desired, intended or target conditions of the ecological 

system, not of the entire SES. At local level, though, objectives should be designed in order to 

restore the sustainability of the whole SES. Nevertheless, this all-embracing target has a 

necessary precondition, a key one: reaching a sustainable status of the ecological system. 

Nowadays, it is common practice that the goals of EU environmental policy (see Table 3) and, 

therefore, the goals of the relevant Strategies of Directives are stated in terms of 

conservation, preservation, protection, enhancement of biodiversity, habitats, water bodies, 

etc. Assessment does refer then to both the ecological and the social systems as well as to 

complex links among them; primary objectives however only seem to address the ecological 

system. 
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Box 5: Example opportunities of global and local action to conserve the future state 

of marine biodiversity and fisheries   

Internationally, leaders must take action to deal with global threats, i.e. climate change impacts, and work on 

global binding solutions. Opportunity for these actions include: 

 Coordinate international efforts to reduce greenhouse gas emissions, and increase the adaptive capacity of 

developing countries to face climate change impacts on fisheries; 

 Stop illegal, unreported and unregulated fishing and ban the use of bottom destroying fishing gear; 

 Augment progress in the integration of fishery-depended datasets and research survey datasets so that they 

are made interpretable and can be pooled for large-scale analyses. This is important, because human threats 

to biodiversity, including from commercial fisheries, occur across large spatial and temporal scales. Therefore, 

biodiversity and ecosystem monitoring, forecasting and risk assessments, such as improved understanding of 

tipping point thresholds, require data to be organised in a global, integrated infrastructure, such as provided 

by the Global Biodiversity Information Facility and Ocean Biogeographic Information System.  

Local and regional governments must take action to stop illegal, unreported and unregulated fishing, in addition to 

removing harmful fishing subsidies. Opportunity for these actions include: 

 Implement comprehensive and integrated ecosystem-based approaches to manage human activities (e.g. 

,aquaculture, fisheries, coastal development) in coasts and oceans, and to manage disaster risk reduction and 

climate change adaptation; 

 Reduce fishing capacity and rebuild over-exploited ecosystems; this could be achieved partly by eliminating 

subsidies to the fishing industry that promote overfishing and excessive capacity; 

 Adopt environmentally-friendly and fuel efficient fishing and aquaculture practices and integrate ‘climate-

proof’ aquaculture with other sectors; 

 Strengthen knowledge of aquatic ecosystem dynamics and biogeochemical cycles, particularly at local and 

regional levels;  

 Strengthen the adaptive capacity of local populations to climate change impacts by conducting local climate 

change assessments of vulnerability and risk and through an investment in raising people’s awareness, namely 

in schools and among stakeholders. 

Source: Leadley et al. (2010) 

Part of the pervasive confusion in EU policies between policy objectives and assessment 

criteria stems from the above-mentioned pattern of primary objectives referred only to the 

ecological system, not the social-ecological one. Policy objectives are the primary ends of 

environmental policy, while assessment criteria are used to judge the system as well as the 

alternative means that might be used to reach those goals. Within AQUACROSS any policy 

objective is defined in terms of a desired or target condition of the involved aquatic 

ecosystem, including its biodiversity. Hence, the analysis of any other ambition related to the 

social system (ensuring financial responses, avoiding a high degree of social contest, 

addressing distributional impacts, etc.), should be considered within the criteria to assess the 

alternative ways to reach the primary environmental targets as well as the institutional 

potential to meet what is required for sustainability (see Section 2.3).  
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Table 2: Environmental Challenges of the AQUACROSS Case Studies  

AQUACROSS Case Study  
Examples of Some Environmental Challenges 

Found in Case Studies  

Case Study 1: Trade-offs in ecosystem-based fisheries 

management in the North Sea aimed at achieving 

Biodiversity Strategy targets 

Pressures from fishing (extraction of species) 

Case Study 2: Analysis of transboundary water ecosystems 

and green/blue infrastructures in the Intercontinental 

Biosphere Reserve of the Mediterranean Andalusia (Spain) – 

Morocco 

Organic pollution (nutrients) and water abstraction 

Case Study 3: Danube River Basin - harmonising inland, 

coastal and marine ecosystem management to achieve 

aquatic biodiversity targets 

Morphological alterations to river and coastal habitats 

Case Study 4: Management and impact of Invasive Alien 

Species (IAS) in Lough Erne in Ireland 

Invasive Alien Species 

Case Study 5: Improving integrated management of Natura 

2000 sites in the Vouga River, from catchment to coast, 

Portugal 

Various sources of micro and macro pollutants, invasive 

Alien Species, alterations to river and coastal habitats 

Case Study 6: Understanding eutrophication processes and 

restoring good water quality in Lake Ringsjön - Rönne å 

Catchment in Kattegat, Sweden 

Organic pollution (nutrients) 

Case Study 7: Biodiversity management for rivers of the 

Swiss Plateau 

Various sources of micro and macro pollutants, habitat 

alteration 

Case Study 8: Ecosystem-based solutions to solve sectoral 

conflicts on the path to sustainable development in the 

Azores 

Pressures from fishing (extraction of species) 

2.2.2 Setting objectives: contributing to EU policy objectives  

Overall, the EU Biodiversity Strategy has six targets, but fails to provide clear environmental 

objectives for the purposes of managing aquatic ecosystems at the local level. For example, 

the Strategy states that Member States should restore 15% of degraded ecosystems by 2020, 

but there are no clear objectives on how to do so or what actually constitutes a ‘restored’ 

ecosystem. Though these targets set forth overarching objectives that are flexible enough in 

their wording to allow Member States the freedom to implement them in various ways (i.e., 

suitable for EU level), they fail to provide measurable objectives for local administrators and 

managers of these systems (i.e., at the local level). As a further drawback, the Strategy makes 

reference to other EU Directives and their implementation. These Directives each contain their 

own goals and objectives (see Table 3 and below). Thus, to support the achievement of the 

Biodiversity Strategy targets, it is necessary to support the implementation and achievement 

of other environmental Directives and their respective goals and objectives (i.e., achieving 

favourable conservation status, status of bird populations, good status for all waters, good 

environmental status for marine waters) for aquatic ecosystems. 
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Table 3: Goals and objectives of the main EU environmental directives relevant to 

aquatic ecosystems  

 Habitats Directive  Birds Directive  
Water Framework 

Directive 

Marine Strategy 

Framework Directive 

Main 

protected 

subjects 

Natural habitats and wild flora 

and fauna of Community 

interest  

All naturally occurring 

wild birds (including their 

eggs, nests and habitats) 

Inland surface waters, 

coastal waters and 

groundwater 

Marine waters including 

coastal waters, seabed and 

subsoil 

Goals 
Contribute to biodiversity 

through conservation of 

natural habitats and of wild 

fauna and flora  

Conservation of all 

species of naturally 

occurring birds in the 

wild state in the European 

territory of the Member 

States 

Protection and 

improvement of inland 

surface waters, coastal 

waters and groundwater 

Achieve / maintain good 

environmental status (GES) 

in the marine environment 

Objectives  
- Maintain / restore 

favourable conservation 

status (FCS) of relevant 

habitats and species 

throughout their natural 

range 

- Designate Special Areas of 

Conservation (SACs) for the 

conservation of relevant 

species 

- Management of features of 

the landscape which are of 

major importance for relevant 

species 

- Regulation of deliberate 

introduction into the wild of 

non-native species so as to 

prejudice relevant habitats 

and species 

- Avoid deterioration of 

relevant habitats and 

disturbance of relevant 

species in Natura 2000 sites 

(Special Areas of Conservation 

[SACs] and the Bird’s Directive 

Special Protection Areas 

[SPAs]) 

 

- Maintain / adapt the 

population of wild birds 

to a certain level 

(corresponding to 

ecological, scientific, 

cultural, economic and 

recreational 

requirements)  

- Designate Special 

Protection Areas (SPAs) 

for the conservation of 

relevant species 

- Regulate that any 

introduction of species of 

bird which do not occur 

naturally in the wild state 

does not prejudice the 

local flora and fauna 

- Preserve, maintain or 

re-establish a sufficient 

diversity and area of 

habitats for all relevant 

species of birds  

 

 

 

 

For surface waters:  

- Prevent deterioration of 

surface water bodies 

- Protect, enhance and 

restore surface water 

bodies to achieve good 

surface water status  

- Protect and enhance 

artificial and heavily 

modified surface water 

bodies to achieve good 

ecological potential and 

good surface water 

chemical status  

- Reduce pollution from 

priority substances / phase 

out emissions, discharges 

and losses of these 

substances  

- Ensure that discharges 

into surface waters are 

controlled according to a 

combined approach  

For protected areas:  

- Achieve compliance with 

standards and objectives 

under protected area 

legislation 

- Establish a register of 

protected areas lying within 

RBDs (River Basin Districts) 

*There are other detailed 

objectives for groundwater 

and drinking water 

- Ecosystems function fully  

- Ecosystems are resilient 

to human-induced 

environmental change 

- Species and habitats are 

protected, biodiversity loss 

prevented 

- Ecosystem properties 

support the ecosystems  

- Anthropogenic inputs do 

not cause pollution 

- Achieve qualitative 

descriptors used for 

determining GES: biological 

diversity, non-indigenous 

species, commercially 

exploited fish and shellfish, 

food webs, eutrophication, 

sea floor integrity, 

hydrographical conditions, 

contaminants, 

contaminants in fish and 

seafood, marine litter and 

energy including 

underwater noise 

 

 

Goals and objectives, as stated through environmental agreements, conventions and 

legislation, must be adopted and translated into national legislation by each ratifying country. 

Each Member State and relevant local authorities that are charged with implementing them 

must decide upon whether these goals and objectives are taken at face value or are rather 

seen as minimum requirements for action. Therefore, in practice, the setting of goals and 

objectives must be founded on those established at the international and/or EU level but 

tailored to the local level and the stakeholders involved therein. 
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Tailoring to the local level  

Setting specific policy objectives at local level, that are consistent with EU objectives, can be 

very challenging. They refer to conservation and biodiversity but must take into account the 

structure and functioning of an ecosystem and its biological components to address a variety 

of human needs (i.e., ESS used by socio-economic systems) (Tear et al., 2005). Setting 

objectives also requires knowledge on the main human pressures on ecosystems and the 

drivers behind represented by the demand of goods and services provided by nature. Drivers 

are in general linked to multiple human activities that must be coordinated since managing 

ecosystems and the services they provide require changing underlying decisions (see Section 

2.4). 

With respect to environmental management and conservation, it is important to understand 

the role objectives play in shaping where and how limited conservation or management 

financial resources are spent (Tear et al., 2005). Here, it is useful to distinguish between 

goals and objectives. The setting of local objectives refer to the particular condition of the 

ecosystems at hand that guarantee resilience and sustainability; that is to say, they are the 

status required to fulfil the criteria to assess the full SES (see Section 2.3 below) and they 

include its resilience, adaptability and transformability. In practical terms, such local 

objectives can be defined as, for instance, eradicating invasive species, halting 

eutrophication, etc. or reducing risk in failing to achieve ecological status of a certain level. 

Whether these objectives are the appropriate objectives to guarantee the sustainability and 

resilience of the system is unknown, but as discussed, at a local level, objectives need to be 

defined to respond to a well-defined environmental challenge and this also depends on those 

responsible for implementation. The rest of this chapter deals with how to define measurable 

objectives and gives examples of how to assess against these objectives. 

Box 6: Examples of objectives from AQUACROSS case studies 8 (Azores) and 3 

(Danube River Basin) 

Key pressure: fishing (extraction of fish biomass) - but also additional pressures from ships/ferries, agricultural 

run-off, sand extraction, and some minimal pressures from tourism/recreation (e.g., anchoring, collision with 

whales) and maybe in the future deep sea mining (but outside of marine protected areas). 

Key changes in relation to state indicators: loss or reduction of fish biomass 

Key CS question: Balancing trade-offs between fishing (extraction of fish) with tourism (diving/viewing fish), as the 

activities are competing for the same resource (fish) in the same spaces. 

Key socio-economic challenge: shifting from traditional/historical sector fishing to an emerging sector (tourism).  

These are just preliminary at this stage. 

Another example from the Danube CS could be the broad objectives for hydromorphological alteration from the 

International Commission for the Protection of the Danube River (ICPDR): 

 Enhance longitudinal continuity for fish migration (constructing fish migration facilities, avoiding new 

barriers, etc.).  

 Restoration, conservation and improvements of river morphology, habitats and their connectivity for 

specified locations. 

 Protection, conservation and restoration of wetlands/floodplains to ensure biodiversity, the good status in 

the connected river water body, flood protection, pollution reduction and climate adaptation for specified 

wetlands/floodplains. 
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 Measures addressing hydrological alterations (hydropeaking, water abstraction for specified locations. 

Box 7: Example of objectives from the AQUACROSS case study 7 (Swiss Plateau) 

The Swiss Plateau is a densely populated area and Swiss rivers are influenced by various human activities. A key 

objective for river management on the Swiss Plateau is to improve the ecological state of rivers regarding 

hydromorphological, chemical and biological conditions.  

Natural communities of fishes, macroinvertebrates, macrophytes and algae define a good biological state of rivers. 

However, there are many other societal needs that have to be considered. These include flood protection, 

agricultural production, waste and storm water disposal, hydropower production, drinking water production, 

recreational activities, as well as budget constraints for river management. Current management strategies to 

improve the ecological state of rivers include an improvement of water quality by reducing diffuse inputs of 

nutrients and plant protection products from agriculture, upgrading of waste water treatment plants to remove 

micropollutants, relocation of waste water treatment plants to larger receiving waters, river restoration to improve 

the morphological state, the protection and extensification of the riparian zone, removal of barriers to improve fish 

migration, mitigation of hydropeaking, and improvement of sediment transport (Kunz et al., 2016). 

 

Describing objectives 

Once the objectives have been defined at a local level, in accordance with EU policy goals, the 

next step consists in making these objectives operational for the assessment of baseline and 

policy scenarios. Thus, with the information gathered regarding the political and ecological 

situation of the local area or region of an aquatic ecosystem, local administrators and 

stakeholders can jointly develop tailored objectives to address the local-level problem 

previously identified (i.e., an aquatic ecosystem that is failing to meet the targets of the EU 

2020 Biodiversity Strategy due to identified local problem).  

Reviewing the respective national transposition of the main Directives may be one useful step 

to get informed about how EU objectives have been detailed at a national and local level.17  

The first step consists in specifying the general objective of the Directive by describing the 

characteristics used to describe targets. For instance, the MSFD describes the ecological 

status of a marine ecosystem by using 11 descriptors. The WFD describes the ecological 

status of a water body by referring to a wide array of descriptors grouped into three 

categories (biological, chemical and hydro-morphological status) and each one of these 

descriptors can be characterised by a set of indicators that can eventually be measured 

qualitatively or quantitatively so as to allow comparing the ecological status and characterise 

the baseline (see Table 4). 

                                           
17 Some countries adapted existing legislation to incorporate the changes required under a particular Directive. Thus, 

while some Member States may have one piece of legislation covering the Habitats Directive, another Member State 

may spread out these requirements over 13. These documents and their links can be found online for the each 

Directive: National Implementation Measures (transpositions to national legislation by each Member State): Habitats 

Directive; Birds Directive; Water Framework Directive; Marine Strategy Framework Directive.  

 

http://eur-lex.europa.eu/legal-content/EN/NIM/?uri=CELEX:31992L0043
http://eur-lex.europa.eu/legal-content/EN/NIM/?uri=CELEX:31992L0043
http://eur-lex.europa.eu/legal-content/EN/NIM/?uri=CELEX:32009L0147
http://eur-lex.europa.eu/legal-content/EN/NIM/?uri=CELEX:32000L0060
http://eur-lex.europa.eu/legal-content/EN/NIM/?uri=CELEX:32008L0056
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Table 4: Descriptors for assessment within the main EU Directives for aquatic 

ecosystems   

Habitats Directive  Birds Directive  Water Framework Directive 
Marine Strategy Framework 

Directive 

Natural habitat types:  

● Range, 

● Areas covered, 

● Specific structure 

and functions, 

● Future prospects 

Species (non-bird):  

● Range 

● Population 

● Habitat for the 

species 

● Future prospects 

No detailed 

definition – but 

similar logic is used 

as for species under 

the Habitats 

Directive. 

 Detailed in Annex V: 

● Biological: aquatic flora, 

macroinvertebrates, fish, etc. 

● Physico-chemical: nutrients, 

oxygenation, acidification, 

salinity, etc. 

● Hydromorphological: 

hydrological conditions, 

continuity, bed substrate, etc. 

● Priority substances and 

chemicals relevant for 

groundwater 

11 descriptors in Annex I plus 

details in Annex III and GES 

Decision criteria:  

1. Biodiversity 

2. Non-indigenous species 

3. Commercial fish and 

shellfish 

4. Food webs 

5. Eutrophication 

6. Sea-floor integrity 

7. Hydrographical conditions 

8. Contaminants 

9. Contaminants in seafood 

10. Marine litter 

11. Energy incl. underwater 

noise  

Source: Rouillard et al., 2016 

Figure 5: Example of deficits between baseline and target status of Habitats Directive 

descriptors  
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Source: Own illustration.  

Legend: The grey teal areas of the bars above represent the current state of a descriptor for 

the Habitats Directive. As such, these can be the existing range of natural habitat types, the 

amount of areas covered for these natural habitat types, etc. The blue section of the bars 

represents the desired state of these descriptors, corresponding to a policy’s targeted status 

for that descriptor, which varies between each descriptor. The distance between the grey teal 

and top of the blue bar represents the deficit or gap between current state and the desired 

state (or target status) of each descriptor.  

The development of descriptors and indicators allows the specification of the objectives and 

provides information on the gap between baseline and target status of the implied 

ecosystems. These distances, sometimes called deficits, are the gaps that must be bridged in 

order to fulfil the desired objectives. As such, descriptors and indicators can provide a 

starting point to help local-level managers focus on key aspects of ecosystems under their 

jurisdiction and develop targeted and measurable objectives to reach a desired status (see 

Figure 5).  

Assessing baselines and setting deficits 

Describing policy objectives following the methods developed for EU policy objectives allows 

the mobilisation of huge amounts of data and the production of research results and 

implementation at EU, national and local levels. For instance, many reports and assessments 

are available to determine the current status of the implementation of the EU 2020 

Biodiversity Strategy, the Nature Directives (Bird and Habitats Directives), WFD and MSFD 

within each Member State. Member State assessments and reports for the different Directives 

can help guide the identification of relevant descriptors and the best sources of information 

within a region or area. This not only connects the local level to the national level, but also 

provides an opportunity to integrate higher-level national objectives into local-level 

environmental decision-making processes.  

Sources for EU assessments and Member State reporting on the main Directives can be found 

online, the links for some of which are listed in Table 5, below. In addition to the policy 

reviews and assessment of current status of implementation, it is highly important to 

determine the ecological status of the aquatic ecosystem to be managed. Most of the 

assessments within the links above should make reference to the ecological state and status 

of the area in question. Information should be gathered regarding: the current status of the 

water bodies (chemical status, ecological status, etc.)/initial assessments of ecological state 

for marine areas/levels of biodiversity and number of protected area sites etc. within the 

administrative boundaries of a site.  
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Table 5: Links to major assessments and national reports for the main EU policies 

relevant to aquatic ecosystem management  

Policy Sources 

Biodiversity 

Strategy 

 Mid-term review of the EU's Biodiversity Strategy: European Parliament resolution of 

2 February 2016 on the mid-term review of the EU’s Biodiversity Strategy 

(2015/2137(INI)) 

 Report from the Commission to the European Parliament and the Council: The Mid-

Term Review of the EU Biodiversity Strategy to 2020 

 Mid-term review of the EU biodiversity strategy to 2020 EU assessment of progress 

towards the targets and actions 

Natura 

Directives 

(Birds and 

Habitats 

Directives) 

 Habitats Directive reporting (information page and links) 

 The State of Nature in the European Union: Report on the status of and trends for 

habitat types and species covered by the Birds and Habitats Directives for the 

2007-2012 period as required under Article 17 of the Habitats Directive and Article 

12 of the Birds Directive  

 European Environment Agency’s “State of Nature in the EU” Technical Report No 

2/2015 

 Web tool on biogeographical assessments of conservation status of species and 

habitats under Article 17 of the Habitats Directive 

 Member State National Summaries for Article 17 of the Habitats Directive (2007-

2012) 

 Birds Directive reporting (information page and links) 

 Reporting under Article 12 of the Birds Directive (period 2008-2012): Member State 

Deliveries 

WFD  WFD Implementation reports (information page and links)  

 Links to the official WFD implementation web sites of the EU Member states 

 River basin Management Plans for the WFD and the Floods Directive 

MSFD  Reporting for the Marine Strategy Framework Directive (information page)  

 The first phase of implementation of the Marine Strategy Framework Directive 

(2008/56/EC): The European Commission's assessment and guidance  

 JRC In-Depth Assessment of the EU Member States’ Submissions for the MSFD 

under articles 8, 9 and 10 

 Report from the Commission to the European Parliament and the Council on the 

progress in establishing marine protected areas (as required by Article 21 of the 

Marine Strategy Framework Directive 2008/56/EC 

 

http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//NONSGML+TA+P8-TA-2016-0034+0+DOC+PDF+V0//EN
http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//NONSGML+TA+P8-TA-2016-0034+0+DOC+PDF+V0//EN
http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//NONSGML+TA+P8-TA-2016-0034+0+DOC+PDF+V0//EN
http://eur-lex.europa.eu/resource.html?uri=cellar:5254559f-68eb-11e5-9317-01aa75ed71a1.0001.02/DOC_1&format=PDF
http://eur-lex.europa.eu/resource.html?uri=cellar:5254559f-68eb-11e5-9317-01aa75ed71a1.0001.02/DOC_1&format=PDF
http://ec.europa.eu/environment/nature/biodiversity/comm2006/pdf/mid_term_review_summary.pdf
http://ec.europa.eu/environment/nature/biodiversity/comm2006/pdf/mid_term_review_summary.pdf
http://ec.europa.eu/environment/nature/knowledge/rep_habitats/index_en.htm
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52015DC0219&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52015DC0219&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52015DC0219&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52015DC0219&from=EN
http://www.eea.europa.eu/publications/state-of-nature-in-the-eu
http://www.eea.europa.eu/publications/state-of-nature-in-the-eu
http://art17.eionet.europa.eu/article17/reports2012/
http://art17.eionet.europa.eu/article17/reports2012/
https://circabc.europa.eu/w/browse/53706c20-670d-4490-9d1f-ed6c9879cce5
https://circabc.europa.eu/w/browse/53706c20-670d-4490-9d1f-ed6c9879cce5
http://ec.europa.eu/environment/nature/knowledge/rep_birds/index_en.htm
http://bd.eionet.europa.eu/activities/Reporting/Article_12/Reports_2013/Member_State_Deliveries
http://bd.eionet.europa.eu/activities/Reporting/Article_12/Reports_2013/Member_State_Deliveries
http://ec.europa.eu/environment/water/water-framework/impl_reports.htm
http://ec.europa.eu/environment/water/water-framework/links/index_en.htm
https://circabc.europa.eu/faces/jsp/extension/wai/navigation/container.jsp?FormPrincipal:_idcl=FormPrincipal:_id3&FormPrincipal_SUBMIT=1&id=c7dfe1fb-9d51-47b7-9fb7-38be09634f54&javax.faces.ViewState=rO0ABXVyABNbTGphdmEubGFuZy5PYmplY3Q7kM5YnxBzKWwCAAB4cAAAA
http://ec.europa.eu/environment/marine/eu-coast-and-marine-policy/implementation/reports_en.htm
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014DC0097&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014DC0097&from=EN
http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/30749/1/lbna26473enn.pdf
http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/30749/1/lbna26473enn.pdf
http://ec.europa.eu/environment/marine/eu-coast-and-marine-policy/implementation/pdf/marine_protected_areas.pdf
http://ec.europa.eu/environment/marine/eu-coast-and-marine-policy/implementation/pdf/marine_protected_areas.pdf
http://ec.europa.eu/environment/marine/eu-coast-and-marine-policy/implementation/pdf/marine_protected_areas.pdf
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Box 8: Example of the elaborated definition of a GES descriptor for the MSFD  

 

Source: Own illustration. Developed by ODEMM, followed by risk categories that relate to this 

(taken from Robinson et al., 2014). *For definitions and risk criteria used for each of the GES 

descriptors see Breen et al. (2012). 

For convenience, specific objectives are often tied to the descriptors of the various Directives 

(see Table 5), this allows taking advantage of the increasing information and knowledge 

already developed to support policy-making, administrators and managers to assess 

baselines and progress towards reaching EU policy objectives. 

Comparison between objectives and baseline based on the descriptors of the environmental 

objectives then allow identifying the gap (deficit) that must be bridged and provides an 

operational definition of the objectives (e.g., Robinson et al., 2014). This can then be used to 

assess the effectiveness and facilitate the choice of management measures (e.g., Piet et al., 

2015), which will be suited to achieving policy objectives and then to reducing deficits.  

For instance, Bouleau and Pont (2015) discussed about policy gaps and deficits related to 

spatial scale regarding WFD objectives and its operational implementation and assessment 

within MS, and Stelzenmüller et al. (2013) about policy goals integration in marine 

ecosystems.  

In addition to these challenges, there also are policy failures in recognizing the importance of 

connectivity among land, inland waters, and seas (e.g., Ormerod and Ray, 2016). 

 

Descriptor 5: Eutrophication  

GES definition used: GES with regard to eutrophication has been achieved when the biological 

community remains well-balanced and retains all necessary functions in the absence of undesirable 

disturbance associated with eutrophication (e.g. excessive harmful algal blooms, low dissolved 

oxygen, declines in seagrasses, kills of benthic organisms and/or fish) and/or where there are no 

nutrient-related impacts on sustainable use of ecosystem goods and services. 

Risk categories for Eutrophication 

High  Undesirable disturbance* caused by eutrophication is widespread (even or patchy) and 

frequent in the region (> once a year) 

Moderate  Undesirable disturbance* caused by eutrophication is widespread but rare in the region (< 

once a year) 

And/or 

Undesirable disturbance* caused by eutrophication only occurs at a site or local scale in the 

region, but it occurs at least once a year 

Low  Undesirable disturbance* caused by eutrophication does not occur in the region, or where it 

does occur it only occurs rarely (<once a year) and on a very local scale (site or local patchy) 

*Undesirable disturbance includes one or more of the following: harmful algal blooms, low dissolved oxygen, 

associated declines in perennial seaweeds or seagrasses, kills of benthos and fish, and dominance by 

opportunistic macroalgae   
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Table 6: Assessing baselines for setting policy objectives: risk of departure from GES 

for MSFD descriptors for the four European regional seas using the ODEMM GES Risk 

Assessment  

GES Descriptor (and 
characteristics)  

Northeast Atlantic  Mediterranean Sea Baltic Sea Black Sea 

Biodiversity-Phyto-
zooplankton 

Low-Moderate Moderate Moderate Moderate 

Biodiversity-Fish Moderate Moderate Moderate Moderate 

Biodiversity-Marine mammals 
and reptiles 

Low-Moderate High Moderate  Moderate-High 

Biodiversity-Seabirds Moderate Moderate Moderate High 

Biodiversity-Predominant 
habitat types 

Moderate Moderate High  Moderate-High 

Non-indigenous species High High High High 

Commercial fish and shellfish High High High High 

Food webs High High High High 

Eutrophication  Moderate Moderate High Moderate 

Sea floor integrity  High High High High 

Contaminants Moderate Moderate  Moderate-High  Moderate-High 

Contaminants in fish and 
shellfish 

Low-Moderate  Low Moderate Moderate 

Marine litter High High High High 

Underwater noise High High  Moderate-High High 

Source: Breen et al. (2012) 
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Figure 6: Example of a hierarchy of environmental policy objectives  

 

  

Source: Own illustration 
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2.3 Assessment criteria: a key element to 

assessing baselines and policy options  

Lead authors: Carlos M. Gómez (UAH & IMDEA), Gonzalo Delacámara (IMDEA) 

Main contributors: Manuel Lago, Josselin Rouillard (ECOLOGIC); Sonja Jáhnig, Simone Langhans (FVB-IGB); 
Leonie Robinson, Fiona Culhane (ULIV); Romina Martin (SRC); GerJan Piet (WUR) 

2.3.1 Assessing baselines and policy scenarios 

Taking into account the whole AQUACROSS Architecture (above) and Section 1.3.6, this 

chapter will provide the basics for making resilience thinking operational to assess current 

and prospective baselines as well as alternative policy scenarios. It will include specific 

criteria such as adaptability, transformability and others that may be relevant to assess the 

sustainability of ecological and social systems within the AQUACROSS framework.  

To make a holistic approach operational the first basic requirement consists in being able to 

assess the whole social-ecological system, in general, and its foreseeable trajectories, in 

particular, under broad sustainability criteria; that is to say, according to the AQUACROSS 

innovative concept (Gómez et al., 2016), based upon resilience thinking. 

Making resilience thinking operational to assess the sustainability of both baseline and policy 

scenarios entails judging the social and ecological systems as well as their mutual 

interactions according to the three attributes or assessment criteria that determine the future 

trajectories of the social-ecological system: its resilience per se, its adaptability, and its 

transformability.    

Resilience refers to the capacity of a system to deal with disturbance and continue to develop 

(Folke et al., 2010). Resilience is therefore defined as a measure of the amount of 

perturbation a linked social-ecological system (SES) can withstand and still maintain the same 

structure and functions (Holling et al., 2002; Walker et al., 2004). Following Hill et al. (2014), 

there has been a growing body of work identifying traits of adaptive governance and 

management that enable a system to manage and cope with increased uncertainty in dynamic 

systems and changing social-ecological baseline conditions: including flexibility in social 

systems and institutions to deal with change; subsidiarity and connectivity (openness of 

institutions providing for extensive participation, effective multi-level governance); iterativity 

(social structures that promote learning and adaptability without limiting options for future 

development). 

In the terms of the AQUACROSS Architecture this refers to the capacity of the social-

ecological systems to co-produce the ecosystems services and abiotic outputs that would be 

demanded by society in the long term. 

Adaptability, one basic attribute of resilience, refers to the capacity of actors in the system to 

manage change so as to maintain the system within sustainability boundaries. Adaptability 
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reflects the capacity of a SES to learn, combine experience and knowledge, adjust its 

responses to changing external drivers and internal processes, and continue developing 

within the current trajectory (Berkes et al., 2000), maintaining or enhancing inclusive wealth 

(Chapin et al., 2009).  

As a result, adaptability contributes to mitigate uncertainty by corrective action. This entails 

for instance the capacity to adapt pressures over ecosystems to conditions that cannot be 

anticipated with certainty. This is, for instance, the case of the relative abundance of 

commercial fish species at any moment in time, changes in rainfall and runoff across 

different spatial and temporal scales, exposure to water-borne risks such as floods, 

droughts, landslides, etc. and progressive detrimental trends in water pollution, scarcity, fish 

exhaustion, etc. Adaptability also includes refers to changing policies or management 

practices when new knowledge becomes available, and putting processes into place that 

allow for continuous evaluation and learning through experience and sharing of different 

understandings.  

One critical objective of policy actions within AQUACROSS consists in enhancing the 

robustness of the system, that is to say its capacity to absorb shocks and adapt to 

circumstances that are not completely predictable in advance.  

In the AQUACROSS project adaptability becomes the central assessment criterion to assess 

the capacity of the social system to respond to new circumstances. This implies for instance a 

critical analysis of technological development, a process increasingly driven by scarcity of 

critical resources such as water and energy and by the increasingly impaired capacity of 

ecosystems to deliver services such as fish biomass and water, or nutrient absortion. Recent 

technological progress in aquaculture, water efficient irrigation, and microfiltration for 

wastewater treatment or desalination are just some of the most relevant adaptive responses 

provided by technology.  

Sometimes, though, adaptation is not enough to ensure the sustained and sustainable 

production of desired ESS, for instance in situations where ecosystems have gone through 

certain thresholds or social processes are too entrenched to be easily adapted. In those cases 

a disruptive change may be necessary that leads to fundamentally different ways of using and 

managing ESS (and possibly different ESS in the first place).  

Similarly adaptability can be linked to the capacity of economic agents to take the best 

available technologies that, due to their potential in reducing pressures over ecosystems, may 

support the compatibility of the eventual expansion of the economy with the preservation 

and improvement of ecosystems. According to this, one important barrier to adaptability has 

to do with technological lock-ins, that is to say mechanisms that maintain water-related 

activities locked into traditional practices and technologies due to transaction costs, risk-

avertive behaviour or evidence of wrong incentives. Technology and technological systems in 

water management follow specific paths that persist even in face of competition from more 

effective and efficient alternatives (Rip and Kemp, 1998; Gandhi and Crase, 2012; Garrick et 

al., 2013; Jain and Gandhi, 2016). 
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Besides barriers to innovation and the limited capacity to uptake innovations once they are 

available, adaptability critically depends on the capacity of institutions to grow to the 

challenge of screening, designing and implementing policy responses that are better adapted 

to new circumstances so as to overcome traditional responses. This is particularly relevant for 

the application of innovative management approaches, such as EBM. Prevailing institutional 

set-ups are better fitted for the design and implementation of traditional management 

alternatives.  

For instance, fish policy is much better adapted for managing commercial fisheries through 

regulating fishing effort than to manage the complex marine ecosystems on which the supply 

of fish and many other ESS depend. Similarly, freshwater institutions are better designed to 

manage individual services such as the provision of water for households and economic 

activities such as agriculture, manufacturing or tourism than to actually govern freshwater 

ecosystems that provide these services along with many others, such as runoff regulation, 

flood control, biodiversity support, etc. that may well be overlooked (Colding et al., 2006; 

Wamsler et al., 2016; Al-Saidi and Elagib 2017).  

Likewise, current management of aquatic ecosystems is fragmented into different 

institutional silos specialised in particular economic sectors (water utilities in urban areas, 

irrigation districts, fish management authorities, land planning offices, storm management 

agencies, nature preservation authorities, etc. at different government levels with little (if any) 

communication amongst them (see for instance Laborde et al., 2016 for inland fisheries and 

Dieperink et al., 2016 for flood management). There is increasing evidence that this 

fragmentation reduces adaptability by the simple fact that it makes the governance system in 

place unable to take advantage of the synergies of EBM approaches. EBM, by focusing on the 

restoration and protection of ecosystems, yields benefits over a wide range of policy domains 

(as in the case of river restoration measures that improve the river ecology, reduce flood risk, 

contribute to habitat preservation objectives, reduce wastewater treatment costs, etc.).  

In fact, the lack of institutional coordination may be one of the leading causes of aquatic 

ecosystems degradation, as different policy areas generate incompatible demands over the 

services provided by the same ecosystem. Such is the case of concurrent advances of 

agriculture, land settlements, energy development, manufacturing, etc. that ignore each 

other’s demands in their baseline scenarios and result in aggregated pressures that cannot 

be met by the water ecosystem at all. 

Adaptive management, like any iterative learning and decision process, addresses prior 

information, decision-making, and observed consequences, which are not final events but 

rather new sources of information that may lead to changes in management practices 

(Ascough et al., 2008). For instance, Summers et al. (2015) described an Adaptive River 

Management framework, related also to effectiveness and implementability criteria. 

Transformability refers to the capacity to create a new system when ecological, economic, or 

social structures make the current system untenable (Folke et al., 2010). This is, for example, 

the case of water stressed regions that, once the opportunities of water development through 



 

74 Assessment criteria: assessing baselines and policy options 

the construction of infrastructures have been exhausted, need to re-examine the way they 

manage water with the use of demand management alternatives able to meet all demands 

from all areas of the economy within available resources. This is also the case of the fishing 

sector that may need to move the main focus away from promoting investments in fishing 

gears and towards conservation of fishing stocks and reducing fishing efforts once 

sustainable yields have been exceeded. 

Transformability addresses active steps that might be adopted to change the system to a 

different, potentially more desirable, state. It includes actions to identify potential future 

options and pathways to get there, the capacity to learn from crises and to navigate 

thresholds for transformations (Chapin et al., 2009). 

Developing the capacity to coordinate actions and overcoming the above-mentioned 

problems of technological and institutional lock-ins are essential changes to transform the 

capacity of the social system to new, more demanding, ecological challenges.   

2.3.2  Assessing the environmental and welfare outcomes of 

baselines and policy scenarios 

This section will define a set of differentiated criteria to assess policy outcomes for both EBM 

and traditional responses and will provide basic guidance to make them operational within 

AQUACROSS. The section is organised according to particular criteria.  

Effectiveness: reaching the environmental target 

The first obvious way to assess the performance of a social system, both in baseline and 

policy scenarios, consists in determining, and eventually measuring, how close or far they get 

to commonly agreed environmental outcomes. Effectiveness, as a policy evaluation criterion, 

refers to indicators of the public and individual decisions to keep up to the promise of 

reaching good status or any other precisely defined objectives across water-related policy 

domains (see Section 2.2 on policy targets). 

The accuracy of the analysis of effectiveness of individual measures, integrated approaches 

or simply in the baseline scenario, depends on how precise policy targets are. For instance, 

when the desired status of ecosystems is defined through a list of indicators (e.g., reference 

conditions of good status of water bodies under the Water Framework Directive) it becomes 

possible to measure policy targets in terms of the gap that must be bridged between baseline 

and reference conditions (such as water quality, quantity, hydromorphology or any other set 

of attributes) and alternative courses of action (see Section 2.5 on indicators of the status of 

conservation of ecosystems and biodiversity). 

Methods to assess and compare the effectiveness in reaching policy targets need to be 

adapted to account for the specificities of EBM when compared against more traditional 

approaches. Conventional measures are more specialised than innovative EBM approaches. 

For instance, freshwater quality problems can be managed by collecting effluents and 
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diverting them to wastewater plants; water scarcity can be managed by reducing leakage in 

the water distribution networks or by installing more water-efficient devices; controlling 

waterlogging as a result of storms can be managed by building storm tanks to buffer excess 

water. The effectiveness analysis of these specialised measures is relatively simple as each 

individual alternative is better fitted for just one and different end.  

Contrariwise, EBM alternatives are not specialised: when properly designed and implemented, 

they yield benefits over a range of policy objectives. For instance:  

 Extensive land application systems, as a means to treat wastewater, do improve water 

quality at the same time as saving energy, capturing carbon, holding soil erosion, 

supporting the production of biomass, and eventually the restoration of native 

landscapes (Ortuño et al., 2011; Villar et al., 2011; Sanz et al., 2014).  

 Green infrastructures in cities are appropriate to control excess storm water whilie 

simultaneously recharging groundwater resources, restoring urban parks, controling 

temperature, and saving energy, amongst other benefits (see, for instance, Jaffe, 2011; 

Longo et al., 2012; Nurmi et al., 2016).  

 Sustainable soil conservation practices, instead of heavily engineered farming on artificial 

soils, increase water retention in the soil, thus reducing exposure to droughts and floods 

and, while allowing for natural soil formation, reducing production costs, increasing 

yields, maximising soil organic carbon deposits, recharging groundwater, improving 

water quality, and supporting biodiversity (see for instance an overview of ‘conservation 

agriculture’ practices in Palm et al., 2014). 

 Similarly the interconnection across water realms, at the core of AQUACROSS, implies that 

the effectiveness of measures or strategies span beyond water bodies that are directly 

managed. River restoration offers wide evidence on how measures taken in the 

headwaters have beneficial impacts downstream and, for instance, the improvement in 

the amount and the quality of rivers may have positive impacts over biodiversity in the 

river mouth, avoid the formation of death zones, control the proliferation of invasive 

species, reduce erosion, and improve sediment flows for beaches and ecological niches 

with positive impacts on human welfare and biodiversity (e.g., meander reconnection and 

hydromorphological measures and effects on macroinvertebrate community composition 

in Lorenz et al., 2016a). 

In addition, in contexts of multiple stressors, decisions have to be balanced effectively. That 

requires the identification and valuation of trade-offs between the status of water bodies and 

the effort required to achieve it - financial, social, or technical difficulties of acting on a 

single specific pressure - (Pistocchi et al., 2016). 
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Efficiency: making the most for human welfare 

Efficiency is an overarching criterion referring to the capacity of individuals, institutions and 

social systems overall to make the most out of available resources, including human and 

natural capital, technologies, infrastructures, etc., in order to improve human welfare. Strictly 

speaking efficiency is a normative criterion to judge allocations of resources across time and 

space in terms of their contribution to human wellbeing.  

The definition of human wellbeing is far more ambitious that the notions used by individuals 

when making decisions in markets. For example, while businessmen care for the profits they 

get, households thrive to make the most of their incomes and farmers to get the highest and 

safer levels of income at the end of the harvesting period, these are but financial, short-

sighted targets that ignore many aspects of human welfare.  

Some of those dimensions of human welfare are negative externalities stemming from the 

degradation of the environment, or of the non-rival and non-excludable goods and services 

provided by ecosystems such as water regulation, health control, and cultural services, just to 

mention a few, while others are positive externalities or benefits. Currently, neither of these 

is reflected in market prices or financial accounts. To counter this, rather than on market 

profits accrued to individuals, economic analysis must focus on collective benefits and human 

wellbeing within the social system in order to make the ambitious concept of efficiency truly 

operational.  

The best way to define an efficient market or institution is through its capacity to take 

advantage of opportunities to make someone better off without making anyone else worse 

off. From a long-term perspective the notion of efficiency can be closely connected to that of 

sustainability. In fact, efficiency means that each generation should do its best out of 

available opportunities to improve its wellbeing as far as this does not result in diminishing 

the options of future generations. 

The first obvious application of the notion of economic efficiency in the face of a policy 

challenge, such as those identified in Section 2.2, consists in using it to discern whether 

there are alternative courses of action that might result in higher benefits to some and that 

do not imply making others worse off. All these opportunities do exist in many cases where, 

for example, water users could benefit from more water-efficient technologies. Reducing the 

waste of valuable resources is an obvious way to get more goods and services in the economy 

without increasing pressures over ecosystems. 

Nevertheless this criterion that no one can negatively affected as a result of a change seems 

too stringent. There are winners as well as losers from most environmental policy strategies, 

whether traditional and innovative, and all of them, despite the size of their benefits, also 

face some opportunity costs. This is why weaker but more operational definitions of 

sustainability rely on cost-benefit analysis and state an alternative situation is superior if the 

benefits of moving away from baseline trends are higher than opportunity costs. 
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Box 9: Welfare enhancing opportunities of coping with overfishing at local and 

regional scales 

 Implementing comprehensive and integrated ecosystem-based approaches to manage human activities (e.g., 

aquaculture, fisheries, coastal development) in coasts and oceans, and to manage disaster risk reduction and 

climate change adaptation; 

 Reducing fishing capacity and rebuilding over-exploited ecosystems; this could be partly achieved by phasing 

out subsidies to the fishing industry that promote overfishing and excessive capacity; 

 Adopting environmentally-friendly and fuel-efficient fishing and aquaculture practices and integrate ‘climate-

proof’ aquaculture with other sectors; 

 Strengthening our knowledge of aquatic ecosystem dynamics and biogeochemical cycles, particularly at local 

and regional levels; 

 Enhancing the adaptive capacity of local populations to climate change impacts by conducting local climate 

change assessments of vulnerability and risk and through an investment in raising people’s awareness, namely 

in schools and among stakeholders. 

Source: Leadley et al., 2010. 

Some examples of welfare enhancing opportunities that can be identified by applying the 

above mentioned efficiency criteria are the following: 

 Distant marine protected areas may entail opportunity costs for local populations, they 

stilll result in increased benefits worldwide not only for the intangible values of 

biodiversity but because they play a key role in the biological productivity that results in 

better fishing opportunities in many other places. 

 Soil conservation practices in agriculture result in short-term losses to farmers but may 

also yield benefits to others that spread all over the river basin as a result of improved 

freshwater quality, runoff attenuation, recharged aquifers, reduced erosion rates, etc. 

These efficiency gains are precisely one distinctive feature of EBM, when compared to more 

traditional approaches. As in the two cases mentioned above, the negative outcomes may be 

borne by locals (fishermen and farmers) but the better state of conservation of the ecosystem 

(let us say at the level of the new marine protected area or the farming area) will provide 

benefits that spread over multiple beneficiaries at regional or even global scales. Comparing 

these costs and benefits is often challenging because while costs, such as farmers’ and 

fishermen’s losses are relatively easy to measure (in terms of foregone income), their benefits 

are intangible, cannot be measured directly through market prices, and are most of the time 

uncertain. When assessing EBM approaches under efficiency criteria one should be aware of 

the difficulties in comparing costs (that can be monetised and are relatively certain) with 

benefits (that cannot be monetised and are more uncertain). 

Nevertheless, given the uncertainties about future conditions, bounded information and the 

snags of valuing non-market benefits, developing a full-fledged cost-benefit analysis to 

compare baseline and policy scenarios is barely feasible. This is why an even weaker concept 

of efficiency can be used as a first approach to economic efficiency: this practical option is 

the so-called cost-effectiveness criterion. 
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The rationale of the cost-effectiveness criterion is based upon the impossibility of setting 

policy objectives based upon optimisation models. Although it may have been the ambition 

of many economic and ecological normative models, outside of abstract models, there is no 

way to define things such as an optimal status of aquatic ecosystems (as the one that delivers 

the most valuable combination of ESS in a sustainable way). Accepting this implies that rather 

than the optimal outcome of an omniscient and perfect foresight modelling efforts, 

environmental objectives are social choices that, at least a priori, should not be assessed 

using efficiency criteria. Hence, the analysis should shift from setting the best possible ends 

to choosing the best possible means to reach previously agreed policy goals. In other words, 

adopting least-cost solutions, rather than best-value ones. Indeed, in this context, the best 

possible strategy is the one that allows reaching the target at the least possible opportunity 

cost. Well-defined objectives along with good indicators of policy targets are functional to 

the design of cost-effectiveness indicators that may allow comparing different courses of 

action and support the choice of the most cost-effective set of measures. 

EBM approaches, in many policy relevant contexts, can be proved as the most cost-effective 

way to meet well-defined policy targets: 

 Many research projects in the EU as well as practical actions have demonstrated that 

giving “room to rivers” by restoring floodplains is a more cost-effective way to reduce 

flood risk than for instance dikes, flood defences, and other heavily engineered 

alternatives. In addition to being more cost-effective for controlling runoff, restoring 

floodplains come along with significant co-benefits that would be foregone should other 

non-EBM alternatives were taken (see DG.Env/D.1-Ares, 2011). These benefits include 

improved water quality, recharged aquifers, wildlife habitat, recreation, sustainable 

agriculture, reduced insurance and recovery costs, forestry benefits and carbon 

sequestration (see ‘Nature Conservancy’). 

 Sustainable urban drainage systems (SUDS), that make use of functions traditionally 

performed by nature, such as water infiltration and runoff regulation, have resulted in 

savings of billions of dollars as compared to other grey storm management 

infrastructures (see Sample et al., 2003). 

 Decisions between the development of a wastewater treatment plant and nature-based 

solutions such as natural water retention measures (NWRM), should account for 

investment and operational costs but also for business and social impacts (e.g., the 

reconnection of a floodplain may entail relocation of economic activities; Pistocchi et al., 

2016).  

 Factoring the value of ESS into decision-making helps identify and negotiate trade-offs 

between different management options (e.g., short-run agricultural production versus 

water quantity and quality regulation), and to develop policies to align private incentives 

with societal objectives, Engel and Schaefer, 2013).  

 Voluntary agreements to preserve upwaters, favoured by side payments, may result in 

important savings from an improved supply of more reliable and better quality water 

http://www.nature.org/ourinitiatives/habitats/riverslakes/benefits-of-healthy-floodplains.xml
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downstream (as compared to better water treatment, desalination plants, and other 

infrastructures in addition to landscape, afforestation and other environmental benefits). 

 Marine management measures have been progressing in conjunction with economics - 

e.g. whaling quotas - towards the enhancement of marine ecosystems and the welfare of 

coastal human populations. Major challenges to assess the efficiency of EBM are still in 

place though (Sumaila and Stergiou, 2015). 

One of the important hypotheses of a project such as AQUACROSS is that there are relevant 

welfare enhancing opportunities in improving ecosystems and biodiversity. In other words, as 

shown in the examples mentioned in the last two sections, improving the status of 

ecosystems and their functioning may be, in many cases, a more efficient alternative that 

prolonging current practice, and these advantages can be convincingly shown by assessing 

the efficiency of EBM alternatives. 

Equity and fairness: sharing the benefits 

To be fair is as critical as being effective and efficient. This requires definitions and guidance 

to assess alternative policy pathways in terms of their foreseeable impacts over income 

distribution as well as for the identification of beneficiaries (linking effectiveness with equity 

criteria) and benefits (linking efficiency with equity) of both EBM and traditional approaches. 

Links with other criteria imply trade-offs with efficiency and synergies: sharing the benefits 

increases feasibility and strengthens enabling conditions for cooperation.  

Equity criteria contribute to the assessment by managing complexity and uncertainty, while 

recognising the diversity of perspectives and knowledge of those affected (Richter et al., 

2015).   

2.3.3  Assessing governance: growing to the challenge of making 

EBM happen 

According to the AQUACROSS innovative concept (D3.1), EBM focus aims at enhancing, 

restoring and/or protecting the ability of ecosystems to contribute to sustainability through 

the continuous provision of a valuable set of ESS, when facing either gradual changes or 

sudden and unexpected perturbations. It includes strategies to maintain and restore natural 

ecosystems, protect vital ESS and reduce water and land degradation and the management of 

habitats to ensure reaching biodiversity targets (see Gómez et al., 2016 and the previous 

Section 2.2 on the policy objectives of AQUACROSS). Though EBM approaches are designed to 

improve the structure and function of an ecosystem in order to enhance its resilience, their 

outcomes are assessed against criteria linked to human wellbeing such as sustainability, 

efficiency, equity, etc. (see previous section).  

EBM approaches differ from traditional management approaches that are not rooted in 

holistic approaches over social-ecological systems.  
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In order to stress this difference, AQUACROSS will provide examples of policy failures linked 

to common practice and also evidence on the consequences of ignoring critical linkages as 

well as the interaction between multiple stressors. 

Criteria under this category are connected with the capabilities and the reforms required to 

speed up the uptake of EBM approaches as well as to reduce transaction costs by adapting 

the institutional set up and improving screening, implementation and design of measures and 

packages of measures.  

This includes the analysis of the following relevant criteria. Governance frameworks are 

adapted to current practice and their adaptation to the requirements of making innovative 

EBM approaches happen is an integral part of the implementation challenges faced by all the 

AQUACROSS case studies. The governance-enabling factors that are required for the 

implementability of EBM have been identified in the AQUACROSS concept as the EBM 

principles (see Long et al., 2015; Gómez et al., 2016). The assessment of these principles at 

the case study level may provide the basis to assess the ability of the governance framework 

in place to hasten further implementation of EBM approaches.  

EBM principles can be grouped into three governance requirements to make EBM happen (see 

Table 7 below) at three different levels: policy, science and management. 

 First, EBM requires rewiring the objectives of collective action and reshaping of the 

policy-making processes. 

 Second, the distinctive nature of EBM poses new demands over science and knowledge. 

 Third, EBM requires radical changes in the way ecosystems and their services are 

managed 
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Table 7: The EBM principles organized along the three domains, i.e. Policy, 

knowledge and Management, considered for EBM    

Domain EBM Principle Comment 

Policy Sustainability These principles apply only to the policy domain where 

sustainability along all three axis, i.e. ecological, economic and 

social, is a first requirement of any policy objective that should 

drive EBM 

Develop Long-Term Objectives 

Decisions reflect societal choice These principles all reflect that decision-making towards a 

fundamental collective agreement on the set of policy objectives 

and their relative importance needs to be inclusive involving all 

the relevant actors, specifically science 

Stakeholder Involvement 

Use of Scientific Knowledge 

Science Use of All Forms of Knowledge This is where science should interact with other stakeholders in 

order to include all relevant knowledge 

Consider Ecosystem Connections These principles only involve the natural sciences 

Ecological Integrity and 

Biodiversity 

Account for Dynamic Nature of 

Ecosystems 

Recognise Coupled Social-

Ecological Systems 

Additional principles that require the knowledge base to cover 

the entire social-ecological system. This is linked to the 

“Integrated Management” principle in the Management domain Interdisciplinary 

Consider Cumulative Impacts 

Acknowledge Ecosystem Resilience This principle requires consideration of an additional aspect of 

the social-ecological system 

Appropriate Spatial and Temporal 

Scales 

This principle needs to be considered in relation to all the 

previous principles within the Science domain 

Consider Effects on Adjacent 

Ecosystems 

This principle covers all the fluxes and influences from outside 

of the boundaries of the natural ecosystem. This is linked to the 

“Distinct Boundaries” principle in the Management domain. 

Acknowledge Uncertainty This principle is most relevant for the interaction of science with 

the Management domain, specifically the principles “Adaptive 

Management” and “Apply the precautionary approach” 

Management 

 

 

 

 

 

 

 

 

 

Organizational Change These generic principles apply to the design of the EBM 

Distinct Boundaries 

Integrated Management 

Adaptive Management These principles are related to the “Acknowledge Uncertainty” 

principle in the Science domain Appropriate Monitoring 

Apply the Precautionary Approach 

Consider Economic Context This principle can only be applied in management if the 

knowledge base can provide the necessary information, e.g. 

principle “Recognise Coupled Social-Ecological Systems” 

Use of Incentives This principle encourages management to go beyond the 

“command and control” top-down management, economic 

and/or social incentives and is partly linked to the “Consider 

Economic Context” 

Explicitly Acknowledge Trade-Offs Both principles mostly apply to the interaction between 

management and decision-making Commit to Principles of Equity 

Source: Rouillard et al., 2016  
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EBM requires resetting policy objectives and processes 

According to the AQUACROSS Concept (Gómez et al., 2016) the main governance challenge 

lies in preserving the capacity of social-ecological systems to remain within a certain range of 

conditions to meet collective and individual development goals, and to ensure the continuous 

provision of a desired set of ESS upon which we, and our economy, depend. In the face of 

ongoing changes and their uncertain future consequences and given the inescapable 

exposure to uncertain shocks, the key to sustainability consists in enhancing the resilience of 

the whole social-ecological system (SES).  

EBM requires rewiring policy objectives to the long-term objective of sustainability. This is 

equivalent to building the resilience of the whole SES as a means to make human 

development sustainable (Biggs et al., 2015a). This implies involving social actors so that 

they are able to take part in cooperative decision-making in order to consider the multiple 

trade-offs.  

Overcoming traditional practices requires mainstreaming new policy objectives linked to the 

resilience of the whole SES rather than to the use and provision of singular ecosystems 

services. These new objectives are linked to resilience (see Section 2.3.1). Since adaptability 

and the transformability of the system have been largely ignored in traditional policy 

decisions, traditional choices have resulted in reduced diversity and heterogeneity. Market 

conditions have favoured most profitable crops and species at the expense of less productive 

ones. Land use practices, driven by policy and market forces, have fostered uniform 

ecosystems at the expense of valuable environmental services such as water regulation, 

pollution control, health security, or biodiversity support.  

These practices are nevertheless vulnerable to a change in current environmental conditions 

as they promote the reduction of biodiversity levels interfering with EF and ESS delivery 

(Altieri, 1999). For instance, the transition to simplified invertebrate fisheries, favoured by 

fishing practices aimed at maximising the production of targeted species, has triggered 

severe shifts to ecological states that are undesirable against both ecological and economic 

criteria. Further, they accelerate biodiversity decline in broader marine areas, threaten food 

security and leave remaining species exposed to the risk of collapse due to disease, invasion, 

pollution and climate change (Howarth et al., 2014).  

Deepening implementation of EBM so as to enhance sustainability implies facing more 

complex decisions that require more inclusive and accountable stakeholder involvement as a 

pre-condition to deal with new and more important trade-offs among policy objectives and 

vested interests as well as to enhance the social dialogue and the cooperation required to 

take advantage of new opportunities.  

Rather than technical choices, EBM decisions must be based on social priorities defined in the 

policy-making process. Trade-offs stem from different sources such as the conflicting 

interests amongst stakeholders, the balance between short and longer term benefits, the 

need to forgo current rents in exchange of future security, or between the local opportunity 

costs and regional and global benefits. Restoring or preserving the ability to absorb change, 
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far from being free, might have sizeable opportunity costs in the short term that should 

ideally be weighed against long-term benefits of sustainability. For example, soil 

conservation practices may contribute to resilience by reducing flood and drought risks 

(through natural water retention), by stabilizing farmers’ income and might also have 

significant co-benefits in terms of water quality and terrestrial and aquatic biodiversity. 

Nevertheless, they might also reduce crop yields while increasing production costs and 

exposure to pests (Rodríguez-Entrena et al., 2014). 

Adaptability also implies a tension between the benefits of adapting economic and social 

decisions to current priorities and demands and/or preserving the options to the future in 

order to maintain sufficient variation to respond to new environmental challenges (Norberg et 

al., 2001; Levin et al., 2013). For instance, when improving the connectivity and decreasing 

the intensity and frequency of flooding in urban floodplain restoration, there are trade-offs 

with drinking water production as the risk of contamination might increase (Sanon et al., 

2012). Similarly, building dikes to cope with flood risk would increase short-run resilience to 

small periodical floods and investment security, but would not be effective at all to tackle 

large floods making the same people more vulnerable to climate change in the long run 

(Palmer et al., 2008). All those are complex decisions that can only be the outcome of 

inclusive, transparent, and accountable policy processes. 

Besides adaptability of policies, there are significant challenges in potential gaps between 

legislation and institutional capacity, and the ability to implement and enforce the law. 

Subsidiarity, coordination, monitoring and data provision are crucial to policy 

implementability (Hill et al., 2014). For instance, Ramírez-Monsalve et al. (2016) reviewed the 

implementability of management measures framed by the Common Fisheries Policy and the 

MSFD, supported by coordination and an appropriate science-policy-society interface. 

EBM is science-based management 

Additionally, advancing towards EBM to overcome current practice requires distinctive 

demands from science and all kinds of knowledge. Regarding science, EBM requires the 

design and implementation of innovative research strategies able to deal with crucial 

methodological challenges involved in operationalizing the resilience thinking approach. EBM 

requires going many steps further than the specific and bounded models that have 

traditionally informed current practice and pose over science the demand of new kinds of 

knowledge able to provide a basic understanding of the complex ecological and social links 

that have either been overlooked or ignored by traditional management decisions.   

Instead of partial analyses that focus on flagship species, hotspots, single pressures, specific 

impacts, etc., EBM requires focusing on biodiversity and ecosystems. Thus the real possibility 

of overcoming current practice and their outcomes, in terms of degraded resilience and 

increased ecosystems’ vulnerability, critically depends on the availability of new scientific 

knowledge to inform new decisions based upon the integrity of the ecosystem.  

Likewise, the possibility of breaking down the institutional silos on which sectoral and 

uncoordinated policies are defined and implemented - sometimes looking at conflicting 
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targets in water, energy, food, land management and other policy domains - requires new 

sorts of science and knowledge able to make visible the co-benefits linked to the 

improvement of a given ecosystem’s condition. This integrated knowledge is a pre-condition 

for designing cooperative instruments and taking advantage of new opportunities (i.e., 

current research on the water, energy, food and climate change nexus; cf. Biggs et al., 2015a 

and b; Howells et al., 2013 or the recent interest in the contribution of nature-based 

measures for EU policies on biodiversity, freshwater or the marine environment (cf. EC, 2012). 

EBM also requires new scientific knowledge to better deal with the intrinsic uncertainties of 

social and ecological systems (see Section 2.6.2). Unlike well established models that attach 

to a basically deterministic perception of future challenges and look for optimal solutions, 

EBM acknowledges irreducible uncertainties and the importance of building adaptation 

capacities not only through restoring critical ecosystems but also building social abilities to 

respond to a range of possible futures as well as to preserve the option to make decisions 

adapted to what may prevail in the future (e g. Marshall, 2013; Lukasiewicz et al., 2015).  

In addition, available models and tools are not currently those that are required to make EBM 

possible. Most policy models are designed to maximise the provision of some ESS (drinking 

water, water for irrigation, urban soil, dilution of pollutants, etc.). In contrast, EBM seeks to 

maximise the value of natural assets; in other words, the aggregated value of all the flows of 

ESS it could provide in the future. As far as traditional management has gone too far in 

transforming ecosystems for a single purpose, the emerging strategies find their more 

relevant opportunities in the benefits attached to restore natural features as for example to 

reduce flood risk, to contribute to groundwater recharge or soil formation, to improve water 

quality or to support life and other simultaneous benefits linked to the recovery of 

ecosystems’ structure and functions (EC, 2015). 

EBM requires radical changes in management 

EBM requires institutional changes, in order to build cooperation to foster collective action, to 

share the array of ESS obtained across different stakeholders and policy domains and to 

break institutional silos along with disciplinary borders and short-sighted, short-term, 

commercial interest. Whilst traditional measures can be (and have been) effectively 

implemented in a variety of governance setups, EBM can only be the outcome of robust 

institutions. Gradually improving current decision-making processes is an integral part of 

building individual and collective capacities and improving governing institutions is an 

integral part in the transition towards enhancing sustainability. In other words, the effective 

implementation of EBM requires adapting prevailing institutions and policy-making processes 

and overcoming significant barriers to be able to meet policy-making challenges such as: 

 First of all, defining the objectives of EBM. This requires an identification of what set of 

ESS may be sustainably provided and their relative importance. As these services are 

asymmetrically valued by different users this implies trade-offs. As a matter of fact, these 

trade-offs are pervasive and inherent to any resource management decision. What is 

special about EBM is that this approach gives prominence to this social decision. It thus 
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favours transparency and a better framework to confront people, businesses and 

governments with the consequences of their own decisions. 

 Second, balancing trade-offs implied in finding the best way to meet any environmental 

objective. As above, the defining components of resilience and the trade-offs amongst 

modularity, connectivity, heterogeneity and redundancy, should be considered in the 

decision-making process.  

 Third, choosing between manifold alternatives. Besides the objectives of EBM, assessing 

individual alternatives involves complex social choices and trade-offs  (i.e., short-term 

opportunity costs vs. long-term benefits; reduced pressures and lower provision of 

commercial services vs. enhanced security, reduced risk, better adaptation prospects, 

etc.). 

 Fourth, taking advantage of the array of different opportunities linked to EBM. While 

traditional measures (such as flood prevention infrastructures) are designed to respond 

to a particular problem, EBM approaches are linked to multiple co-benefits and may 

simultaneously contribute to various policy objectives such as biodiversity conservation, 

water quality and quantity, public health, flood and drought risk reduction, climate 

change adaptation, energy savings etc. Their advantages as compared to traditional 

approaches rely on the actual opportunity to seize the benefits of synergies or 

simultaneous advances across different policy and biophysical realms. However, current 

methodologies such as single-purpose cost-effectiveness or optimisation models might 

be blind to EBM co-benefits. Additionally, advantages of EBM may remain hidden in the 

institutional silos where sectoral policies are currently designed. 
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2.4 Characterising drivers and pressures 

affecting aquatic ecosystems  

Lead authors: Florian Pletterbauer, Andrea Funk, Thomas Hein (BOKU) 

Main contributors: Leonie Robinson, Fiona Culhane (ULIV); Ana I. Lillebø (UAVR); Carlos M. Gómez (UAH & 
IMDEA), Gonzalo Delacámara (IMDEA) 

2.4.1  Introduction 

Drivers are the result of deliberate human decisions18. Behind any decision to obtain living 

species and materials such as water or minerals or to transform the energy from tides or 

from freshwater flows, there is the desire to satisfy a particular and well-defined demand of 

inputs for the production or consumption of goods and services as varied as food, 

manufactured products, power or recreation. The same holds true for goods and services for 

which production requires the modification of the natural environment at different scales, 

such as dredging a riverbed to improve navigation, the impoundment and diversion of water 

to match demand and supply or to provide security against floods, or the alteration of coastal 

areas to make room for population settlements and harbour facilities. Beneath any pressure 

there is a driver represented by the demand of goods and services provided by nature. 

Drivers, or demands for goods and services provided by nature, are in general linked to 

multiple activities that must be coordinated in order to align individual actions with the 

overall objectives of sustainability. For instance, freshwater ecosystems provide water for 

households, agriculture, power generation and virtually all industries, as well as to maintain 

ecological flows. Equally, water quality is the compounded result of the demand of point and 

diffuse quality regulation services coming from almost all economic agents throughout space 

and the security against floods and droughts resulting from natural runoff regulation services 

spread all over social and economic agents. 

The analysis of drivers requires a comprehensive analysis of the social and economic system 

that may include a wide range of activities including those that are actually responsible for 

current pressures but also the least economically relevant activities that may result in 

cumulative degradation processes in the future and the activities, which are not actually 

relevant, but might benefit from a better conservation state of the biophysical system.  

Most applied analyses to date focus on few individual activities explaining single pressures 

with few interactions (if any) among them. Besides individual activities causing direct 

pressures, a comprehensive analysis requires taking into account other activities that despite 

                                           
18 Note that the term drivers is used exclusively for naming the demand of nature provided goods and services (e.g. 

ecosystem services and abiotic outputs). To explain the underlying factors of these drivers we use terms such as 

determining factors, causes, etc. This way the effective drivers of pressures over ecosystems are clearly 

differentiated to the drivers of the drivers themselves (i.e. distinctions between indirect and direct drivers become 

irrelevant in this context). 
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their marginal economic importance may result in indirect yet significant pressures (such as 

maritime trade, which may result in the dispersion of invasive species or all the use and 

disposal of plastics that results in disturbance of marine food chains). Additionally, attention 

must be paid to activities that might not be currently important but only as the negative 

consequence of past decisions (such as foregone opportunities in tourism and sustainable 

agriculture due to widespread land-use changes).  

Thus, drivers are easier to identify, inventory and measure than to understand. Indeed, many 

drivers can be measured through the observed use of particular services, such as the volume 

of water diverted for irrigation, the amount and composition of effluents from businesses and 

households or the tons of fish caught and landed per unit of time at a given place. All these 

numbers are being reported at local and global scales with increasing precision and detail. 

However, EBM and the management of the services they provide demand changing the 

underlying decisions that lead to these numbers.  

Besides measuring, science may support policy in explaining the current use of water. For 

instance, the amount of demanded water may be determined by factors like the market prices 

of crops, the choice of irrigation techniques or the crop mix, subsidies and regulations in 

place, etc. A minimum understanding of the factors that determine the use of water services 

thus becomes essential so that focused interventions can be designed and implemented to 

reduce pressures, by reducing the demand of services and improving sustainability. 

In other words, analysing drivers is equivalent to understanding what the demands of natural 

goods and services are, and how these demands are satisfied within the range of technical 

alternatives bounded by legal and governmental institutions and within market conditions in 

place. Understanding drivers is then equivalent to understanding the individual and collective 

decisions that result in a certain demand of services provided by biophysical ecosystems 

(including ESS19 mediated by biotic processes and abiotic goods and services).  

The analysis of drivers involves all the complexity of modern social systems. On one side, at a 

macro level, the scale of the demand of materials and energy depends on global factors such 

as population, income growth and climate change. At global and regional extents these 

processes provide a rough approximation to the scale of environmental challenges. However, 

the observed use of the services of natural capital is not just the result of these high-level 

                                           
19 As expressed in the AQUACROSS concept the precise definition of nature provided services is far from a settled 

issue. Significant differences do exist between the concepts used at both sides of the Atlantic (see e.g. the CICES -

Haines-Young and Potschin, 2012-, and the US-EPA classifications -Landers and Nahlik, 2013-). The US 

Environmental Protection Agency has developed a comprehensive effort to define and classify all nature based 

services to humans in general and of aquatic ecosystems in particular (see Landers and Nahlik, 2013). In order to 

encompass all goods and services provided by biophysical systems that are relevant for human welfare and thus for 

the social-ecological system, we include under these services all those that are mediated by biological processes 

(defined as the ecosystem services in the CICES classification; see: Haines-Young and Potschin, 2012), and all those 

that are not. All this without excluding services that are not included in the CICES classification that may be 

economically relevant, such as navigation, a service which provision is in the basis of relevant hydro morphological 

changes in European rivers and coastal areas and that result in relevant pressures over freshwater and marine 

ecosystems such as oil spill, spread of invasive species, noise, etc. 
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factors, and many other positive and negative social processes need to be factored into the 

analysis. This is the case for all adaptive social processes such as research, innovation, 

institutional development, social awareness for consequences of nature degradation and 

many other adaptive responses taking place at regional and local scales. 

Therefore, drivers must be understood at the adequate spatial and temporal scales (see 

Section 2.6.3). Whilst important to understand global trends, at the regional and local level 

considered in the AQUACROSS Case Studies, population growth is less informative about 

demographic pressures than, for example, land planning and land use patterns. Similarly, 

innovation is less useful to understand local decisions than the prevailing incentives to 

implement better irrigation techniques or more selective fishing gears.  

Understanding drivers of pressures therefore calls for the analysis of decisions at different 

levels. Decision-making processes in the global society are complex and involve multiple 

scales, from global to local, and multiple agents closely connected to each other. For this 

reason, it is important to distinguish between the different levels influencing drivers behind 

pressures of aquatic ecosystems. High-level variables act at regional, national or global 

scales and include macro processes such as demographic trends, economic growth, climate 

change, technological development, etc., which are then determining factors of the demand 

of many ESS and abiotic outputs.  

The different levels of decision-making are also related to the difference between exogenous 

and endogenous variables at each level (Rounsevell et al., 2010). For instance, at a local level, 

the size of the population and the prices of inputs and outputs in fishing and agricultural 

markets are exogenous variables that cannot be managed by local agents. Yet, to some 

extent these factors can be controlled at regional levels, where land planning decisions are 

made, and at national or EU levels where quotas, subsidies, taxes and other decisions are 

taken.  

Decision variables (such as fishing quotas, irrigation techniques, land use patterns, etc.), are 

specific to each scale and decision-making framework. Local actors can make crop and 

fishing decisions but have little or no control at all over market prices, technology 

development or climate. At the same time, at any decision-making scale, some drivers may 

be exogenous in the short term (i.e., technology options, land availability, drought risk, etc.) 

but subject to change in the longer term, as a result of spontaneous or policy driven 

adaptation processes. 

Drivers and pressures are increasingly shaped by the extension of the progressive and 

cumulative impacts of human activities over marine, coastal and freshwater ecosystems as 

well as by the consequences of climate change and the need to adapt business and social 

responses to new social, political and environmental situations. Technological development 

and innovation processes are increasingly driven by the need to adapt to a more constrained 

and more uncertain supply of ESS and abiotic outputs. However, they provide the opportunity 

to take advantage of new business models that result from all the above-mentioned factors.  
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Many marine-, coastal- and freshwater-based economic activities are constrained by further 

deterioration of aquatic ecosystems. These ecosystems are the source of provisioning and 

regulating services that are essential for human life, the maintenance of many economic 

activities and for aquatic ecosystems themselves. Contemporary trends in agriculture, urban 

development, energy and transport are progressively shaped by resource scarcity concerns. 

For instance, scarcity and insecurity of supply explain innovation trends. They are the primary 

reasons to deploy old and new methods to enhance efficiency into practice with which all 

services provided by aquatic ecosystems are used.  

Furthermore, implications of climate change have to be considered. Climate, oceans and the 

hydrological cycle are interlinked, and therefore also determine the availability of 

provisioning and regulating services. The anticipated change of climatic patterns will have 

considerable consequences for both, the ecological as well as the socio-economic system and 

thus for the provisioning of ESS and abiotic outputs. Complex decision processes that include 

the autonomous outcome of markets but also the regulating capacity of the institutions in 

place mediate both demands and technologies.  

ESS and abiotic outputs provided to the social system are co-produced by humans and 

nature. Their provision is organised in primary activities such as water diversion, 

impoundment, extraction, wastewater management, gravel extraction, fishing, building and 

operation of harbours, dredging, etc. Their common purpose consists in combining natural 

resources with human capital and effort in order to co-produce nature-based goods and 

services demanded by the social system. These primary activities provide basic inputs to 

many, eventually all activities devoted to the production of final goods and services that are 

directly relevant for human welfare such as food, shelter, energy, recreation, security, health, 

etc. 

Summing up, changes in ecosystems are driven by the demand of services provided by 

nature, including ESS and abiotic outputs. The co-production of these services is organised in 

primary activities that produce and convey basic inputs to the production of goods and 

services that are directly relevant for human welfare. 

As per pressures, most studies to date attempt to deal with how a single pressure, such as 

pollution discharge, may cause a change in the ecosystem state, such as nutrient enrichment 

(e.g., Dahm et al., 2013; Phillips, 2014), or selective mortality of fishes (e.g., Pauly et al., 

2002). More recently, attempts have been made to consider multiple pressures and their 

cumulative or interacting effects on ecosystem state (e.g., Matthaei et al., 2010; Ormerod et 

al., 2010; Piggott et al., 2012; Halpern et al., 2008, 2015; Micheli et al., 2013). Cumulative 

effects can exhibit additive, synergistic or antagonistic responses (Crain et al., 2008). For 

example, on a pan-European scale only 40% of combined stressors had an additive effect on 

fish in rivers whereas 60% had a synergistic or antagonistic effect (Schinegger et al., 2016). 

The effect of multiple stressors can also manifest differently in different aquatic realms and 

different components of aquatic systems also respond in different ways to conditions with 

multiple sources of stress (Nõges et al., 2016).  
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Moreover, pressures can trigger adaptive processes in ecosystems that might take them to 

alternative stability domains (resulting, for example, in habitat changes and/or losses, 

Scheffer et al. 2001): These may lead in turn to cumulative changes (e.g., triggered by "slow" 

and "fast" variables, Carpenter and Turner, 2000) in the structure, abundance and 

composition of species (leading to extirpation or extinctions as well as to the proliferation of 

opportunistic species or pathogens); affecting ecosystems at local, regional and global scales 

(from single habitats to climate change, e.g., Opdam and Wascher, 2004). Further, these may 

have differentiated effects over time (with threats over future ecosystems’ resilience, loss of 

options, irreversible changes and negative legacy effects e.g., Waylen et al. 2015). Any 

change in ecosystem state can itself change the supply of ESS and abiotic outputs due to the 

inherent links between ecosystem structures (including biodiversity), functions and services 

(see Section 2.4.5 and Section 2.5).  

Conceptual approaches have evolved to the now frequently used DPSIR (Driver-Pressure-

State-Impact-Response) framework (see Cooper, 2013 and Patrício et al., 2016a for a 

summary of work in this area). DPSIR is a widely used approach to identify links between 

drivers and pressures and ecosystem state (as well as their impacts and related responses 

that are not addressed here). It provides a structure for the investigation of how pressures 

can lead to changes in ecosystem state and impacts on human wellbeing. DPSIR formalises 

the relationships between various sectors of human activity and the environment as chains of 

links. However, DPSIR models have rather favoured impact mitigation strategies and might 

fail to initiate structural responses as implied by EBM such as feedback loops or impact of 

multiple stressors (Gómez et al., 2016). Even though there is no reason why DPSIR 

frameworks respectively formalised relationships between drivers, pressures and states 

cannot be an integral part of the wider AQUACROSS Architecture, where feedback loops and 

multiple pressures are factored in. 

In the remainder of this chapter, we focus on how relationships between drivers, pressures 

and ecosystem state can be explored as part of the AQUACROSS AF. First, in Section 2.4.2, we 

briefly introduce the relevant conceptual approaches (policy typologies, broad classifications, 

linkage matrices) that can be used to help frame this exploration. In Section 2.4.3, we 

consider what the role of indicators is in exploring relationships between drivers, pressures 

and ecosystem state, also introducing some of the key sources of effective indicators for 

these kinds of approaches in aquatic systems. In Section 2.4.4 we introduce qualitative and 

quantitative methods that can be used for exploring relationships on the demand side. 

Finally, in Section 2.4.5, we describe how change in ecosystem state (caused by human 

activities and their pressures) can affect the supply of ESS (hence linking to Section 2.5), and 

also how the effects of impacts on society caused by the changing nature of the ecosystem 

and availability of its services (driven by the demand on those services) is itself changing the 

nature of societal processes; this illustrates that we should also consider feedbacks from 

drivers and pressures into the supply-side of the AQUACROSS AF. 
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2.4.2  Conceptual frameworks for exploring relationships between 

social processes, drivers, pressures and ecosystem 

state 

The AQUACROSS Architecture and Heuristics (below) provides a comprehensive conceptual 

framework to integrate knowledge, data indicators, models and other analytical tools in a 

meaningful way that can be taken by stakeholders and inform policy-making (Gómez et al., 

2016).  

Figure 7: The AQUACROSS Heuristics  

 

Source: Gómez et al., 2016 

Information layers and flows: It shows the main information- indicator layers that need to be 

considered to represent the social ecological system considering the demand side (in red) 

and the supply side analysis (in green). Linking these layers requires empirical and theoretical 

models able to provide explanations. The chain of drivers, pressures, structure covers lower 

right part of the diagram and can be linked with the analysis of social processes (in order to 

explain the drivers) and to the ecosystems functions and processes (in order to understand 

their impact). 
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Besides the understanding of the economic, institutional and social processes that explain 

the drivers behind the pressures of aquatic ecosystems the AF requires a clear definition of 

each component of D-P-S relationships (Böhnke-Henrichs et al., 2013; Liquete et al., 2013; 

Culhane et al., 2016). Therefore the DPSIR framework is a practical way to develop this part of 

the demand side component within the AQUACROSS Architecture.  

As a starting point, the relationships between drivers, pressures and ecosystem states are 

often described using relational chains within a linkage-based framework (Rounsevell et al., 

2010; Knights et al., 2013; Robinson et al., 2014). This approach involves defining the 

drivers, the pressures, and the ecosystem components (e.g., ecosystem state), and 

developing typologies or comprehensive lists of all relevant elements, which can be linked in 

those relational chains (for example, see Figure 7).  

We link the socio-economic and the ecological systems by making a clear distinction 

between:  

 The activities that benefit from the provision of natural goods and services for the 

production of final goods and services that are of direct concern for human welfare (such 

as food, shelter and recreation). 

 The drivers of pressures affecting ecosystems, represented by the specific demands of 

naturally provided goods and services (water, fish, energy, materials, regulation services, 

etc.) in the quantity, quality required at specific places and moments of time.  

 The primary activities that (co-) produce goods and services provided by natural capital 

(such as extraction of water, mining, fishing, navigation, dredging, building and 

operation of harbours, pollution, etc. 20 ) that are of direct concern to explain the 

pressures over ecosystems.  

From a social perspective, to understand the demand of primary inputs provided by nature 

(the drivers), we must understand the demand and supply of final goods and services to 

which these inputs contribute. In turn, to understand the pressures and the subsequent 

changes of ecosystem components, we should focus on the primary activities that are directly 

interacting with the ecosystem and cause a pressure so that we know where the pressure is 

and with what intensity. This helps determine how exposed the ecosystem is (a key aspect in 

assessing sensitivity and the effect of drivers and pressures acting on the ecosystem).  

This identification of the different types of activities related to a particular driver or several 

drivers is new in terms of how we think about the DPSIR-type approach. It is important to 

clearly distinguish between these different parts within the relational chain, and have a 

common understanding of the categories in order to develop comparable outcomes of the 

                                           
20 Following the standard definitions of economic activities use “production of final goods and services” for the first 

kind of activities (encompassing the so-called secondary and tertiary sectors of the economy) and “primary activities” 

for the second (encompassing the production of all inputs such as energy, materials and other services that are 

essential to the production of final goods and services). See the EU Classification of Economic Activities: http://eur-

lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32006R1893&from=EN   

http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32006R1893&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32006R1893&from=EN


 

93 Characterising drivers and pressures affecting aquatic ecosystems 

relationships across geographical regions and/or across aquatic realms, regardless of the 

drivers, types of activities, pressures or ecosystem changes, which may occur (Cooper, 2013). 

By identifying clear and consistent relationships, this facilitates the identification and 

selection of indicators and the focus of management options in a coherent way (Rogers and 

Greenaway, 2005) that can be further used to analyse the causal links between biodiversity, 

ecosystem functions and services (see Section 2.5). 

Figure 8: Example of a relational chain 

 

Legend: Example of a chain from the social processes that determine the production of final 

goods and services that explain the demand of ecosystem goods and services (Drivers) and 

the activities addressed to meet this demand (Primary activities) that result in specific 

pressures over particular ecosystems’ components. While traditional management focus on 

the primary activities that link drivers to pressures, the EBM promoted by AQUACROSS aims 

at being an integrated management response along the whole linkage framework.  

Source: Pletterbauer et al. (2017) 

Typologies of final and primary activities, drivers, pressures and ecosystem components can 

be developed such that they are clearly linked to policies relevant for aquatic ecosystems. A 

starting point must be the EU classification of economic activities (EU-NACE).  

For example, policies such as the MSFD or the WFD already list a number of pressures (e.g., 

selective extraction of species) and ecosystem components (e.g., fish) and these can be 

included directly in typologies, or can be indirectly linked to particular elements in 

typologies. Through the relational chains, the human activities responsible for pressures and 

change in ecosystem state can be identified (e.g., fishing). Deliverable 4.1 of AQUACROSS 

(Pletterbauer et al., 2016), reviews all relevant typologies for aquatic realms and develops an 

overarching classification that aligns nomenclatures and definitions of drivers and pressures 

from the Habitats Directive, Marine Strategy Framework Directive and the Water Framework 

Directive. The classification is organised into a linkage framework where linkages between 

drivers, pressures and aquatic ecosystem components (e.g., fish, invertebrates, habitat type) 

are identified using expert knowledge and evidence from literature. This can be used to help 

frame and contextualise the analyses in case studies going forward. 
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http://ec.europa.eu/eurostat/statistics-explained/index.php/NACE_background
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2.4.3  Indicators of drivers, pressures and ecosystem 

components/state 

The linkage framework integrated into the AQUACROSS Heuristics and Architecture facilitates 

the identification of indicators needed to describe the system from the demand side. 

Generally, an indicator provides aggregated information on target criteria (Wiggering and 

Müller, 2004), and tries to depict qualities, quantities, states or interactions that are not 

directly accessible (Kandziora et al., 2013).  

A clear and common understanding of the concepts of indicators, indices and metrics is 

required. In AQUACROSS we will consider the following definitions: 

 Indicators - variables that provide aggregated information on certain phenomena, acting 

as a communication tool that facilitates a simplification of a complex process. It relates 

to the component or process responsive to changes in the social-ecological system, but 

does not necessarily have a measurable dimension, and therefore it is not an operational 

tool in itself. 

 Indices - metrics whose final outcome should be easily interpreted by a non-specialist 

within a qualitative continuum. It can be a quantitative or qualitative expression of a 

specific component or process, to which it is possible to associate targets and to identify 

trends, and which can be mapped. It is how an indicator becomes an operational tool 

used within management, regulatory or policy context. 

 Metrics - quantitative, measured, calculated or composite measurements based upon two 

or more measurements that help to put a variable in relation to one or more other 

dimensions.  

In order to populate the demand side of the analysis with indicators this might require 

metrics of activities, drivers, pressures, components, etc. Deliverable 4.1 (Pletterbauer et al., 

2016) explores the availability of these across different aquatic realms such as the indicators 

used within the water framework directive reviewed by Birk et al. (2012) or the indicators 

used within the Marine Strategy Framework Directive (EC, 2011). We also consider how or 

where they can be used to evaluate change in the SES rather than just describing state.  

The purpose of an assessment strongly determines the type of metric or index needed to 

address a problem and the spatial scale of application (Feld et al., 2009). There has to be a 

clear representation of the indicandum, a proven cause–effect relationship, an optimal 

sensitivity of the representation, information on adequate spatio-temporal scales, 

transparency including a reproducible methodology, a high degree of validity and 

representativeness of the available data sources, an optimal degree of aggregation, 

information and estimations of the normative loadings, high political relevance, high 

comprehensibility and public transparency, relations and responsiveness to management 

actions, an orientation towards environmental targets, a satisfying measurability, a high 

degree of data availability, a high utility for early warning purposes (Wiggering and Müller, 
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2004 in Kandziora et al., 2013). Finally, trade-offs between costs and effectiveness is a 

crucial factor.  

We note that indices and metrics usually can only represent individual parts of the framework 

at a time (e.g., the state of benthic invertebrate communities or the size of a particular 

activity), and this limits their potential for evaluating causal relationships in the system. We 

also note that metrics can only be used in data rich situations where metrics of different parts 

of the framework (driver, pressure and ecosystem state) can be calculated and linked using 

quantitative approaches (see Section 2.4.4). However, the use of indicators is limited in 

situations where data is limited, such as in European regional seas. In these cases, qualitative 

approaches can be used, starting from linkages, to make an assessment where relational 

links are inferred but not quantitatively measured (see Section 2.4.4).  

2.4.4  Methods to analyse links between drivers, pressures and 

ecosystem state 

The information layers described in the previous section, and the standardised and consistent 

information systems they conform, facilitate the description and the assessment of each one 

of the building blocks of the AQUACROSS Architecture. Going one step further requires being 

able to build upon the links between one layer and the other as well as within the social and 

ecological systems themselves. This is the role of qualitative and quantitative analytical 

models (see below). Beyond description and assessment, the distinctive character of these 

models lies on the fact that they allow navigating through different information layers and 

building comprehensive scenarios, storylines, assessments of the overall social-ecological 

system and the development of comprehensive decision tools and platforms to support the 

identification, design, implementation and assessment of EBM options.  
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Figure 9: Analytical models involved in AQUACROSS 

 

Source: AQUACROSS Concept (D3.1) 

Legend: The analytical models involved in AQUACROSS are purposely designed to mobilise existing knowledge and provide the best 

possible explanation of the links involved (Gómez et al., 2016). 
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Linking drivers with pressures and ecosystem structures 

Effective resource management will require the targeted selection of analysis method that 

accurately predicts the outcome of possible management decisions or future scenarios. That 

involves assessing the drivers and pressures in relation to the ecosystem state of a system 

and making educated decisions about the response of that state to changes. Various 

qualitative and quantitative tools for D-P-S assessment are available and widely used across 

different aquatic realms, which are reviewed in detail in Deliverable 4.1 (Pletterbauer et al., 

2016). There are various approaches that deal with the analysis of linkages between drivers, 

pressures and ecosystem state along a gradient of qualitative to quantitative applications.  

First qualitative or semi-quantitative approaches can be used to gain greater overall 

understanding of social-ecological systems using mainly expert judgement and outcomes 

from different empirical studies or literature reviews as a basis (e.g., Knights et al., 2013; 

Halpern et al., 2008, 2015). The linkage framework can be further developed with 

approaches, which do not directly rely on ‘measured quantifications’, such as fuzzy cognitive 

mapping (FCM, see Lorenz et al., 2016b) or Bayesian belief networks (BBNs, see Aguilera et al. 

2011). They are able to integrate causal knowledge and to investigate complex systems. 

However, different authors (e.g., Mouton et al., 2009; Boets et al., 2015; Hamilton et al., 

2015) concluded that expert models can only be successfully applied when there is already 

detailed information on the ecology and response to environmental parameters available for 

the respective system and model evaluation is seen as critical for developing rigorous expert 

models (e.g., Chen and Pollino, 2012; Hamilton et al., 2015). 

On the other end of the gradient a broad variety of quantitative correlative models exist that 

focus on the causal relationships of ecological components, ecosystem conditions and/or 

human activities in high detail but in a narrower view based on empirical data. Correlative 

approaches significantly differ in their performance with respect to overall predictive 

performance, generality and transferability, their causal interpretability with respect to 

relevant background theory or graphical representation for communication in an open 

management process (for details see Deliverable 4.1: Pletterbauer et al., 2016).  

Also process-based models are widely used including, hydrological models or catchment 

models for nutrients (e.g., Venohr et al., 2011) that in turn can be used as input for e.g. 

species distribution modelling (Dormann et al., 2012). A process-based model is the 

mathematical representation (formulated as mathematical functions) of one or several 

processes, including physical- or biochemical-based processes, based on a function of 

generic principles or empirical knowledge (expert knowledge) and might be fitted on the 

basis of empirical data.  

In process-based models causality is defined ex ante, assuming that the model structure and 

process formulation are correct whereas in correlative methods mainly post hoc 

interpretation is causal besides the fact that also the explanatory variables are employed in 

such a way that they are expected to represent causal mechanisms. In that sense causality is 

not necessarily assured and a critical issue in both approaches (Dormann et al., 2012) and 
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there is strong evidence that combined model development (use of different models and 

tools for the same analytical problem) is of help. On the one hand, it improves the overall 

performance (Araujo and New, 2007); on the other, it leads to more robust models (Hamilton 

et al. 2015) with higher interpretability or ecological importance (e.g., Boets et al., 2015; 

Dormann et al., 2012), Hence, this also contributes to better communication in open 

planning processes. 

Understanding the social processes that explain the drivers of 

pressures: activities, institutions, and ecological constraints 

On descriptive grounds, the assessment of drivers of ecosystem change must provide the 

elements to screen out the multiple ways societies trigger changes in nature. Emphasis must 

be placed on those social processes that result in significant ecosystem changes, and then in 

shifts in the ecosystems’ structure and dynamics, and particularly in those drivers that push 

the system beyond its sustainability thresholds. Comprehensive lists and detailed 

classifications of drivers might help for this screening exercise and therefore are useful to 

focus on relevant drivers as well as to avoid omitting potentially relevant interactions.  

On analytical grounds, the assessment of drivers of ecosystem change must be designed in 

such a way so as to provide the best possible understanding of social choices, both about the 

demand of relevant ESS and about the technological alternatives chosen to meet those 

demands (which in turn determine the pressures stemming from the satisfaction of the 

demand of ESS). However, looking just from the perspective of the demands for ESS and 

abiotic outputs could result in overlooking some pressures. These might be unintentional or 

caused by activities which are not directly a demand of goods and services: for example, 

diffuse pollution from activities removed from the study site. Therefore, different 

perspectives should be considered, as well as considering activities related to the demands 

on goods and services. It is also possible to start by looking at what pressures and specific 

activities are relevant to the system.  

Different approaches for analysing the interactions in the demand-side relationship exist that 

provide the possibility to analyse and explore linkages between economic activities, drivers, 

pressures and ecosystem components. Drivers of ecosystems change are the main outcome 

of social processes (see the AQUACROSS innovative concept). All pressures are driven by 

economic activities such as agriculture, transport of goods and services, land occupation and 

development, fishing, tourism and recreation, etc. that demand ESS of different kinds (such 

as water for irrigation, navigation services, room for houses, provision of fish, landscapes, 

etc.). All these activities can be classified and described by using common macroeconomic 

accounting methods (such as those used in national or regional accounts). In addition, their 

importance for human welfare can be approached by using standard economic concepts like 

value added, employment, input output coefficients, etc. 

A first basic step to investigate the drivers of pressures consists in identifying the set of 

goods and services enjoyed at the case study level. That is to say making the inventory of the 

current, past and prospective use of ecosystems services at the level of the case study. This 

http://aquacross.eu/content/aquacross-innovative-concept
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exercise serves to scan what the benefits are and who the beneficiaries are, sometimes with 

high level of precision. For instance farmers, local manufactures, anglers, etc. can be singled 

out as the direct beneficiaries of rival and excludable services such as water for irrigation, 

raw materials, recreation, food, etc. Similarly collective benefits of public services such as 

water security, flood and pest control may be identified.  

The identification of benefits and beneficiares leads to the identification of economic 

activities (such as farming, manufacturing, fishing, recreation, etc.) thus facilitating the 

understanding of drivers of demand for ESS.  Analysing these activities (their added value, the 

job opportunities, the use of provisioning ESS - such as freshwater water, wild fish, 

navigation, etc. - their resource efficiency, the regulations that allow or restrain the use of 

water related ecosystems’ services, etc.) is key to understand and explain the demand of 

provisioning ESS and then the underlying drivers of ecosystem change.  

This activity-based approach allows focusing on individual ESS (such as provision of water for 

irrigation, power generation, navigation, etc. or other particular services such as 

agrochemicals disposal, recreation, runoff regulation, etc.), for which the demand can be 

linked to the size and the characteristics of the sector. In fact, the analysis of economic 

activities is the basis to understanding the current and prospective demand of aquatic 

ecosystems services that drive ecosystem change. 

Despite its importance to explain many drivers of ecosystem change, the analysis of 

economic activities is not enough to get a full understanding of the demand of ESS. This is 

because activity-based (or sectoral) analysis does not account for non-market and non-

monetary services, ignores interactions between economic activities that result in emerging 

drivers, and tends to place emphasis on the scale of the sector. All drivers of ecosystem 

change must be properly understood at different time and spatial scales. Non-market ESS 

help understand the opportunity costs of matching past, current and prospective demands of 

provisioning ESS to the different economic activities. Furthermore, those services provide the 

background to understand critical trade-offs linked to business-as-usual scenarios and to 

develop strategies for a sustainable future.  

Besides activities, institutions and governance systems play a central role in how humans 

relate with nature (Ostrom, 1990; Lowry et al., 2005; Abunge et al., 2013). They form part of 

the determining factors of the demand of ESS of all economic activities. Institutions 

encompass social rules and interactions between social agents, determine property rights, 

power structures, incentives, access and control of natural resources and shape individual 

and collective decisions in many ways. Examples of institutions are property rights systems 

(common property, open access, quotas, fishing allowances, water use rights, etc.), social 

norms and rules (such as agreements to protect marine and terrestrial reserves, national and 

international treaties, etc.), economic policies (land development plans, river basin 

management plans, energy, agricultural, fisheries policies, etc.). 

Drivers of ecosystem change are outcomes of social processes. Thus, besides the description 

and measurement of activities and associated demands of ESS, the analysis of drivers 
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requires a proper understanding of the determining factor of both the size of the economic 

activity and its use of ESS. 

The first kind of analysis refers to understanding each economic activity itself. Explaining the 

production level of agriculture or fishing activities requires a proper understanding of the 

demand for food, the size of the population as well as their incomes and the public policies 

in place (irrigation development plans, agricultural policy, etc.) and their evolution 

throughout time (population and income growth, technological innovation, etc.)21. Population 

growth is linked to the scale of demand of ESS, both at global and local scales, and drives the 

expansion in the demand of food, energy, and land. This, compounded with trends in 

economic development, trigger social trends such as land transformation from forest to 

agriculture, urbanization, resources depletion, infrastructure development, etc. (Dasgupta 

and Ehrlich, 2013). Global economic growth and demography are the main drivers of the 

overall consumption of final goods and subsequently of the demand of natural resources and 

other ESS (MA, 2005; Gomez-Baggethun and Ruiz-Perez, 2011; IPCC, 2014). 

The second kind of analysis refers to understanding how a particular economic activity 

results in the effective demand and use of a given quantity and quality of ESS. For instance, 

the demand for water associated with the production of the same amount of wheat depends 

on many factors such as soil type, weather, the irrigation system in place and the water 

source used. Likewise, the effluents produced by any urban settlement not only depend on 

the number of people but on the status of the sewage system, the wastewater collection and 

treatment system in place as well as the costs and prices and on the way water is finally 

discharged to the environment.  

The previous distinction is essential to understand the factors determining the demand of 

ESS, and then to identify challenges and opportunities to improve the management of 

ecosystem demand in such a way that leads to more sustainable pathways of concurrently 

satisfying human needs and improving the status of ecosystems.  

Though the analysis of drivers might be seen as following a one-way pathway from the social 

system to the ecological system it is also a critical piece of a holistic approach (built over the 

entire AQUACROSS Architecture). This is particularly important when considering the 

determining factors explaining socio-economic activities that drive ecosystem change. These 

activities are increasingly shaped by the need to adapt to changes, most of them detrimental, 

in the ecological system such as climate change, higher and more severe risks of various 

kinds, scarcity, depletion of critical assets, etc. These mutual adaptation processes are 

important nowadays to understand trends in activities as crucial as transport, agriculture, 

power production, fishing, etc. (Perez, 2004; Carpenter et al., 2006). The selection of 

production techniques (e.g., drip instead of gravity in irrigation, aquaculture instead of wild 

                                           
21 Sometimes these determining factors are called high-level drivers as different from low-level drivers. See, for 

instance, Knights et al., 2013. These definitions are confusing and force distinguishing drivers that are exogenous 

and endogenous to ecosystems. We prefer making a clear distinction between the factors that determine the 

economic activities on one side and the drivers, or factors that drive ecosystems change.  
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fisheries, electrical instead of fuel powered cars) and many other decisions can only be 

explained as responses to a more resource constrained environment (Dietrich et al., 2014). In 

a similar sense, practices such as sustainable urban drainage, soil conservation measures, 

smart transport networks etc. can only be considered as part of adaptation strategies to 

reduced risks and adapt to climate change. 

The social drivers of ecosystem change are increasingly wrought by the extension of the 

progressive and cumulative impacts of human activities over marine, coastal and freshwater 

ecosystems as well as by the consequences of climate change and the need to adapt business 

and social responses to new situations. Technological development and innovation processes 

are increasingly driven by the need to adapt to a more constrained and more uncertain supply 

of environmental services and by increasing opportunities to take advantage to the new 

business opportunities that result from all the above-mentioned factors. Many marine-, 

coastal- and freshwater-based economic activities are increasingly constrained by further 

deterioration of aquatic ecosystems. These ecosystems are the source of provisioning and 

regulating services that are essential for human life, the maintenance of many economic 

activities and for aquatic ecosystems themselves and the services they provide. New trends in 

activities such as agriculture, urban development, energy and transport are in the context of 

emerging trends in technology driven by resource scarcity concerns. Scarcity and insecurity of 

supply is an emerging driver of innovation. These are reasons to put into practice old and 

new methods to enhance the efficiency with which all services provided by water ecosystems 

are used. Furthermore, implications of climate change have to be considered. Climate, oceans 

and the hydrological cycle are interlinked and determine the availability of provisioning and 

regulating services. The anticipated change of climatic patterns will have considerable 

consequences for both the ecological as well as the socio-economic system. Further, it is 

important to bear in mind that complex decision processes that include the autonomous 

outcome of markets but also the regulating capacity of the institutions in place mediate both 

demands and technologies. 
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2.5 Understanding causal links between 

biodiversity, ecosystem functions, and 

services  

Lead authors: António Nogueira, Ana I. Lillebø, Heliana Teixeira, Michiel Daam (UAVR) 

Main contributors: Leonie Robinson, Fiona Culhane (ULIV), Carlos M. Gómez (UAH & IMDEA).  

2.5.1  Working framework: from state to benefits 

The analysis of drivers and pressures (see previous section) fits into the broader AQUACROSS 

Architecture (see above) through the consideration of the changes in ecosystem state that are 

affected by pressures and driven by the demand of ecosystem services (ESS). An impact on 

the state of the ecosystem can lead to changes in ecosystem functioning (on the ecological 

side) and the subsequent supply of ESS and abiotic outputs (socio-economic side). For 

example, changes in the supply of ESS and abiotic outputs can in turn have impacts on the 

demand side resulting from shifts in human activities associated with the use of those 

affected ESS and abiotic outputs. These changes can be related to the value of those services 

or through the benefits gained from those services. This section deals with the relationship 

between biodiversity and ESS. These links are also important when considering where the 

focus of management should be, as management can target human activities (drivers), 

pressures or ecosystem components, which in turn may affect the supply of ESS. 

Within the holistic analysis of SES proposed by AQUACROSS, and considering the AQUACROSS 

Architecture, this chapter focuses on the supply-side perspective (Figure 10), which describes 

the capacity of the ecological system to deliver services to the socio-economic system, thus 

contributing to human welfare. In this sense, Chapter 2.5 receives inputs and builds upon the 

analysis presented in the previous chapter. Understanding how this change in ecosystem 

structure and status may result in a change in the capacity of the ecosystem to deliver 

services requires both the understanding of how pressures affect the state of the ecosystem 

and how a change in state may affect the supply of services.  

The effects stemming from a wide range of pressures have been mostly analysed through 

field observations or experimental manipulations. These studies tend to inform us about the 

effects at the species or, sometimes, the process level.  

Nevetherless, the challenge is to understand how or if these changes would lead to any 

change in the capacity of the ecosystem to supply services. However, metrics used to 

describe how pressures change ecosystem state may not be the appropriate ones to describe 

how the ecosystem contributes to the delivery of all services. For example, most studies on 

the effects of abrasion from trawling fishing activity describe the effects in terms of changes 

in abundance or sometimes biomass of benthic invertebrate species (Kaiser et al., 2006) or of 

aquatic submerged vegetation (Costa and Netto, 2014).  
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In order to consider the effect of abrasion on the service Mediation of waste, toxics and other 

nuisances (see Table 9 below), not only would we need to know about abundance and/or 

biomass, but we would also need to know how the different components of the benthic 

system (flora and fauna) can be described in terms of their role in this regulating and 

maintenance service. This could be through consideration of biological traits that are 

associated with Mediation of waste, toxics and other nuisances e.g. the role of different fauna 

species in bioturbation or the role of seagrasses in phytoremediation.  

The remainder of this chapter explains our current understanding of the relationship between 

biodiversity and the supply of ESS.  

Figure 10: Supply-side in AQUACROSS Architecture 

 

Legend: Representation of AQUACROSS Architecture (adapted from Gómez et al., 2016), 

highlighting the supply-side perspective addressed in this chapter.   

The AQUACROSS innovative concept (Gómez et al., 2016; see Figure 3) has defined and 

identified the key points and links within the SES that are relevant for this stage of 

implementation of the AQUACROSS AF. Biodiversity (BD) (directly measured or as captured by 

the state of ecosystems) and the ecological processes ensuring crucial ecosystem functions 

(EF) that enable the supply of ecosystem services (ESS) are central themes to this stage of the 
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AF. Figure 11 illustrates the flows that need to be considered in order to understand the 

causal links between biodiversity, ecosystem functions and services.  

Figure 11: Representation of a Social-ecological System 

 

Legend: Representation of Social-ecological Systems highlighting the flows from biodiversity 

to ecosystem services (adapted from Liquete et al., 2016b and Haines-Young and Potschin, 

2012). 

Considering the AQUACROSS AF, the supply of ESS, i.e. the potential or capacity of the 

ecosystem to supply services, is directly linked to the ecological system (Figure 10) while the 

demand of ESS, i.e. whether and how the service is actually used, is the entry point to the 

socio-economic system (Figures 10 and 11). For example, from the supply side, an 

assessment could be made of the capacity of the system to supply ‘Seafood’ and would 

include the biomass of all fish and invertebrate species that can potentially be used for 

‘Nutrition’ (i.e., the stocks). From a demand side, the flow of the ‘Seafood’ service to society 

would be the individuals that are actually taken (i.e., the catch). In this sense, a change in 

ecosystem state and biodiversity can lead to a change in the supply of services but not 

necessarily change the demand on the service. 

The demand for ESS also differs from benefits to society (Figure 11). Benefits are generated 

by ESS in combination with other forms of capital and have a direct impact on human welfare 

(Fisher et al., 2008). For example, the service ‘Seafood’ is a provisioning service leading to 

the benefit of nutrition. Recognising that benefits often require a production boundary 

(Culhane et al., 2016; Sousa et al., 2016) can help define the differences between ESS 

demand and benefits, but not for all. For example, flood protection is both a service (e.g., 
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through the attenuation of wave energy) and a benefit (where there is the avoidance of 

providing artificial flood defences and people are not affected by flooding). Depending on the 

service, certain individuals or groups benefit at different times. In addition, the benefits of a 

service can be numerous, for example, for the previous example ‘Seafood’ the benefits are 

broader than nutrition. The livelihoods of fishermen, for example, are also assumed to be 

captured within this service (e.g., Hattam et al., 2015). Avoidance costs should also be 

considered (e.g., the avoidance of disease and subsequent health costs due to regulation of 

pests and disease in the ecosystem) and so should wider benefits than purely economic ones 

(many services do not have a direct monetary value that can be measured or a monetary value 

which truly reflects the full benefits offered by the service). On the other hand, a benefit can 

also be dependent on a number of ecosystem functions and services, as for example 

‘Recreation and leisure’. Associated to benefits there is also the value(s) that is placed upon 

the benefits (Figure 11). 

Several classification systems are available (Böhnke-Henrichs et al., 2013; Liquete et al., 

2013; Culhane et al., 2016; Lillebø et al., 2016) to make the AQUACROSS Architecture and 

Heuristics operational. However, the literature shows that for each of these themes, i.e. 

biodiversity and ecosystem state, ecosystem functions, and ESS, definitions and classification 

schemes adopted vary according to specific objectives, scales of application, and often in 

relation to specific policies. Hence the use of common classifications is more an exception 

than a rule (as briefly reviewed in the following Sections 2.5.3 and 2.5.4).  

The next sections explain how to move from the conceptual framework described above 

towards an operational framework, firstly by reviewing current knowledge on BD-EF-ESS 

causal relationships (Section 2.5.2), and then by identifying approaches (i.e indicators - in 

Section 2.5.3, and modelling approaches - in Section 2.5.4) deemed more adequate for an 

effective assessment of the supply-side, just preceding benefits (BD-EF-ESS - Benefits).  

The work described in this chapter will provide guidance for the analyses to be performed 

within each case study, i.e. for evaluating the supply-side when implementing the AF. The 

outputs of this work will also contribute directly to data analyses (see Section 2.6), 

forecasting of biodiversity and ESS provisioning and providing support to facilitate and 

promote science/policy communication (see Section 2.1). 

In a first step, a review and meta-analysis of the current state of knowledge of selected links 

between biodiversity, ecosystem functions and ESS have been performed (see Section 2.5.2). 

This meta-analysis contributes to the identification of knowledge gaps and causalities as well 

as weaknesses associated with existing approaches (e.g., unsuitability of existing causality 

models to deal with impacts of environmental stressors). The conceptual and methodological 

guidance introduced in this chapter to characterise the possible causal pathways between 

biodiversity and aquatic ecosystem functions and services, together with the meta-analysis of 

existing information will result in a suite of new, integrative indicators to quantify such 

relationships. 
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In addition, relevant and feasible indicators and metrics to measure changes in aquatic 

biodiversity, ESS status and trends, and ecosystem resilience according to Action 5 of the EU 

2020 Biodiversity Strategy, will also be identified (see Section 2.5.3). The selected indicators 

and associated metrics will allow capturing relevant social-ecological dimensions at the case-

study level, including climate change adaptation and mitigation (green/blue infrastructure, 

carbon sequestration), human activities supported by ESS (like tourism, maritime traffic, and 

fisheries), and biodiversity. 

Attaining the AQUACROSS core goal of expanding current knowledge and fostering the 

practical application of the EBM concept for all aquatic (freshwater, coastal, and marine) 

ecosystems as a continuum (see Section 2.1), the importance of biodiversity at land-water 

interfaces (ecotones and ecoclines) in relation to drivers and pressures affecting aquatic 

ecosystems will also be assessed. Species richness is often relatively high in ecotones due to 

the proximity and functional links between the adjacent ecological systems that are combined 

with the processes within the ecotone itself. In these adjacent ecological systems, the genetic 

diversity may also be high, especially where the ecotone coincides with the extremities of 

species’ distributions (Naiman and Décamps, 1990). In the case of transitional waters 

systems, between the river and the sea, their dynamic is better explained by a two-ecocline 

model, which represents a boundary of more gradual, progressive change (both spatial and 

ecological) between two systems (Attrill and Rundle, 2002). AQUACROSS will explore how 

ecotones/ecoclines contribute to the resilience and resistance of the associated ecosystems 

to various classes of human (and natural) disturbances (related with drivers and pressures 

identified as described in Section 2.4) through: 

 Identification of environmental issues linked with resilience, namely how different types 

of biodiversity relate to resilience (see Section 2.5.2). 

 Identification of biodiversity aspects that might promote resilience of ecotones (land-

freshwater, land-marine) and of ecoclines (freshwater-marine) (see Section 2.5.2). 

 Identification of biodiversity indicators and associated metrics suitable to forecast 

resilience (see Section 2.5.3). 

 Integration of resilience in biodiversity causal links with ecosystem functions and services 

over the aquatic realms continuum (from catchment to sea) (see Section 2.5.4). 

The role of habitats (from freshwater to marine environments) and ecotones/ecoclines (land-

freshwater, land-marine, freshwater-marine) in the causal links between biodiversity, the 

ecosystem functions and the supply of ESSwill be assessed in general in all the case study 

areas, whilst some case studies will act as show cases where the proposed methodologies will 

be tested. This will be achieved by creating habitat-function-service matrices for the case 

studies at different scales (see Section 2.6), where functional and trait biodiversity will be 

taken into consideration. Also through spatially-explicit mapping techniques to deal with 

knowledge/data gaps (Maes et al., 2014) and forecasting the nature of causality links with 

biodiversity (meta-analysis). Since current knowledge of the links between measures of 

biodiversity (e.g., species richness, functional diversity) and ESS that directly affect human 
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well-being is still patchy, special attention will be given to how structure, diversity and 

dynamics of natural communities underpin their ability to deliver ESS. In this context, some of 

the case studies will be used as show cases by using ARIES modelling approach (see above) 

that deals with scattered and/or incomplete datasets and provides an assessment of 

uncertainty. 

Information assessed at this stage will provide insight on how biodiversity-related causal 

links are affected during disturbance and recovery through a suit of statistical approaches 

(see Section 2.5.4), and how to take advantage of the ecologically valuable properties of 

ecotones/ecoclines to contribute to the development of management guidelines in aquatic 

ecosystems (see Section 2.1). Ultimately, which lessons can be learnt from the case studies 

will be identified and may lead to the reformulation of the original set of research questions 

identified in the AF or the overall concepts of AQUACROSS.  

2.5.2  Literature review of links between biodiversity, ecosystem 

functions, and services 

Over the past decades, extensive scientific research has been conducted to ascertain the link 

between biodiversity and ecosystem functioning (hereafter BEF) on the one side and between 

biodiversity and ecosystem services (BES) on the other. However, aquatic (and especially 

freshwater) ecosystems have received relatively little attention, and it may be disputed as to 

whether evidence of BEF relationships obtained from research in terrestrial ecosystems may 

be extrapolated to aquatic realms (e.g., Duncan et al., 2015). Subsequently, the current state 

of knowledge on links between BD, EF and ESS in aquatic realms (i.e., freshwater, coastal and 

marine) will be reviewed. This will include evaluating the state of the art regarding i) 

mechanisms and shape of aquatic BEF and BES relationships reported in the open literature; 

ii) to what extent BEF and BES relations are ecosystem-specific or whether they are 

interchangeable; and iii) current research limitations and needs in aquatic BEF and BES 

studies. This will hence aid in identifying key areas and bottlenecks in establishing aquatic 

BEF and BES relationships by carrying out a rule-based approach literature review, by 

reviewing and summarising existing scientific and non-scientific literature related BEF and 

BES.  

To pave the way for better-integrated and more productive research in this area, and 

particularly for the adoption and/or development of indicators, associated metrics and 

models within and hopefully beyond the AQUACROSS context, it is essential to provide 

precise classifications and standard definitions of biodiversity and ecosystem status, 

ecosystem functions and ecosystem services.  

Biodiversity and ecosystem state 

Biodiversity has an inherent multidimensional nature, spanning genes and species, functional 

forms, habitats and ecosystems, as well as the variability within and between them 

(Gonçalves et al., 2015; Laurila-Pant et al., 2015). Often regarded as a measure of the 
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complexity of a biological system (Farnsworth et al., 2012, 2015), biodiversity is usually 

taken by an abstract ecological concept (Bartkowski et al., 2015). Since preventing the loss of 

biodiversity is increasingly becoming one of the important aims of environmental 

management, biodiversity must be understood and defined in an operational way (Laurila-

Pant et al., 2015). 

Farnsworth et al. (2015) have defined biodiversity as the information required to fully 

describe or reproduce a living complex ecological system, acknowledging like many others 

that, though a definition might be precise and ‘concrete’, it is still technically very demanding 

to calculate in practice (Bartkowski et al., 2015; Jørgensen et al., 2016). To add complexity, 

all the dimensions of biodiversity are tightly interconnected, affecting the state and 

functioning of the ecosystem as well as the ESS (Laurila-Pant et al., 2015). Ecosystems are 

complex functional units, encompassing not only the biotic and abiotic components of the 

environment (i.e., the biophysical environment), but their ecology as well (i.e., how living 

organisms interact with each other and with the surrounding environment). To offer a 

consistent theory about ecosystem function a recent ecological sub-discipline has developed 

- Systems ecology (Jørgensen et al., op. cit.), which builds on four pillars (1) hierarchy, (2) 

thermodynamics, (3) networks, and (4) biogeochemistry (Jørgensen, 2012). Because of such 

complexity, it is not straightforward to account for the role of biodiversity or for the impacts 

of its decline on ecosystem services in general (TEEB, 2010b; Jørgensen and Nielsen, 2013; 

Laurila-Pant et al., 2015).  

So the question is how to identify and select relevant proxies of biodiversity that allow 

moving current knowledge, attaining at some of the AQUACROSS main aims: 

 Increasing our understanding of biodiversity and ecosystem functioning relationships 

(BEF); 

 Understanding if BEF relationships patterns are common across all aquatic systems, and 

comparable to those identified for terrestrial ecosystems; 

 Establishing causal links between biodiversity, ecosystem functioning and the provision 

of ESS; 

 And applying an EBM approach to evaluate the impacts of anthropogenic activities in 

biodiversity, and ultimately in the provisioning of ESS, using the AQUACROSS AF. 

There is still not a clear understanding of the underlying role biodiversity plays in ecosystem 

service provision (Kremen, 2005; Hattam et al., 2015). In order to understand this role, the 

parts of the ecosystem that provide the services need to be identified. Most studies consider 

parts of the ecosystem such as biotic groups (e.g., Grabowski et al., 2012), habitats (e.g., 

Burkhard et al., 2012) or functions (e.g., Lavery et al., 2013) in understanding the effect 

changes in these have on the supply of ESS. Interactions between multiple biotic groups or 

habitats (thus overall biodiversity) can influence service supply (Barbier et al., 2011). 

However, even where biodiversity generally has been related to the supply of services, this 

has started with identifying the initial relationship between specific biotic groups and their 
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supply of services and then considering biodiversity of these groups at a regional scale 

(Worm et al., 2006). 

The task of understanding how biodiversity provides ESS is aided by a clear system to 

categorise and link the services derived from ecosystem components and the services and 

benefits provided by these components to the social system (the ecosystem service flow in 

Figure 11). This categorisation system helps to identify all the parts of the ecosystem that 

contribute to supply i.e. the important ESS providers (Kremen, 2005), through the flow of 

processes and functions leading to services and benefits. Once the ecosystem components 

that supply services have been identified, an understanding of the types of interactions 

between changes in ecosystem state and service generation is needed to assess the 

ecosystems capacity for service supply.Assessing biodiversity and evaluating the state of 

ecosystems requires suitable indicators for tracking progress towards environmental goals, 

for quantifying the relation between biodiversity and the function, and for establishing links 

with ecosystem services provision (e.g., Pereira et al., 2013; Tittensor et al., 2014; 

Geijzendorffer et al., 2015; Teixeira et al., 2016). But for assessments to contribute to 

increasing our understanding of the general causal links between BD-EF-ESS, it is crucial to 

ensure comparability of the biodiversity measures adopted (Pereira et al., 2013; Gonçalves et 

al., 2015; GOOS, 2016), by selecting at least a minimum set of common metrics for 

monitoring trends in biodiversity and the integrity of the ecosystems.  

In the process of selecting operational indicators it is nevertheless important to emphasize 

what Jost (2006) so clearly stated: “a diversity index is not necessarily itself a “diversity”’, and 

likewise the many measures used as proxies to grasp biodiversity, by themselves, are not 

biodiversity”. This points to the need of using complementary measures that account for the 

complexity and many facets of biodiversity (Kremen, 2005; Borja et al., 2014; Bartkowski et 

al., 2015). 

In Section 2.5.3 several potential sources of indicators (and indices or associated metrics) are 

presented. It is however important to have present that the field of biodiversity valuation is 

rather heterogeneous regarding both valuation objects and valuation methods (Bartkowski et 

al., 2015; Teixeira et al., 2016). The conservation and environmental management 

programmes have had different goals and approaches through time and have therefore 

selected different components to be assessed (see Section 2.2), leading to different 

classifications and to the choice of different indicators. For example, earlier conservation 

initiatives (e.g EU Nature and Water Directives) have focused traditionally on structural 

components individually, or in communities’ composition and associations and habitats, 

which is then reflected in the classifications adopted (such as the EUNIS biotopes 

classification, species red lists, biological quality elements etc.). More recent EBM approaches 

(e.g., MSFD, EU Biodiversity Strategy) attempted to integrate the interplay between natural, 

social and economic systems, with their choice of indicators reflecting these different 

dimensions and the interactions between them (e.g., biodiversity, food webs, commercial fish 

and shellfish, contaminants, improved knowledge of ecosystems and their services). Such 

inconsistency between existing approaches leads to a gap in standardized classifications for 
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identifying the different and most relevant components of biodiversity for selecting 

biodiversity indicators, as is discussed in Section 2.5.3.  

It is important to understand the parts of the ecosystem that deliver services (e.g., species, 

groups of species or habitats), and indicators should be reflective of these ecosystem 

components and their functions (Kremen, 2005; Hattam et al., 2015). One approach for doing 

this could be through starting with a typology of ecosystem components representing the 

ecosystem (e.g., habitats and their biotic groups) and using relative contributions to identify 

how much these components contribute and which are the most important ecosystem service 

providers (Burkhard et al., 2012; Robinson et al., 2014; Culhane et al., 2016; Sousa et al., 

2016; Tempera et al., 2016). This approach can be qualitative, simply indicating whether a 

component gives a low, medium or high contribution (e.g., Burkhard et al., 2012; Robinson et 

al., 2014) or can be more quantitative, using information such as rates of relevant functions 

and spatial extents of the service providers (Culhane et al., 2016; Sousa et al., 2016; Tempera 

et al., 2016). Once the ecosystem service providers have been identified, these can be the 

focus for identifying indicators of the functions, benefits and services, while maintaining a 

strong link with the state of the ecosystem (as discussed in the following paragraphs for EF 

and ESS). A typology of ecosystem components can facilitate assessment of changes in state 

due to drivers and pressures and consequent changes in the supply of services by linking 

them to a typology of drivers and pressures upstream, (presented in Section 2.4) and to 

typologies of ESS downstream. An example can be found below in Tables 8 to 10 based on 

the Common International Classification of Ecosystem services (CICES) typology, and includes 

the ESS and the abiotic outputs from the ecosystem (links between ecosystem components 

and a marine specific CICES typology has been carried out in Culhane et al. (2016). 

Ecosystem Functions 

Any application of ecological models, selection of indicators, and quantifications of ESS 

requires a sound knowledge of how ecosystems are working as systems (Jørgensen et al., 

2016), i.e. functioning.   

However, the definition of ecosystem functioning and in particular the indicators used for 

measuring ecosystem function do not gather more consensus (Jax, 2005; Nunes-Neto et al., 

2014; Dussault and Bouchard, 2016) than that found for biodiversity. The term “function” has 

been used in different ways within environmental science (Jax, 2005), and in particular within 

ecology (Dussault and Bouchard, 2016) and ESS context (Jax, 2016).  

In ecology, functions have privileged a contextual and relational aspect, i.e. “causal role” 

functions (see discussion by Dussault and Bouchard, 2016), over an evolutionary perspective. 

Based on the organizational theory of functions, function in ecology has been defined by 

Nunes-Neto et al. (2014) as “a precise effect of a given constraint on the ecosystem flow of 

matter and energy performed by a given item of biodiversity, within a closure of constraints”. 

This definition clearly distinguishes and links the different components of the biodiversity 

and ecosystem function (BEF). And in fact, in a EBM context, as that of the AQUACROSS AF, 

attributing functions to biotic and abiotic components of ecosystems facilitates the purpose 
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of analysing processes of an ecosystem in terms of the causal contributions of its parts to 

some activity of an ecosystem (Jax, 2005), for example related with ESS. Nevertheless, this 

approach may reveal itself to be insufficient with respect to some important aspects of the 

BEF research, namely in the relationship between biodiversity and ecosystem stability and 

resilience (Loreau and de Mazancourt, 2013; see discussion by Dussault and Bouchard, 

2016). From an evolutionary perspective ecological functions should be defined relative to an 

ecosystem’s more general ability to persist (i.e., both resistance and resilience). Accounting 

for how species traits enhance their present fitness and therefore their propensity to survive 

and reproduce (Bigelow and Pargetter, 1987) might better suit the focus of BEF research on 

the relationship between biodiversity and ecosystem resilience and sustainability. This, in 

turn, when scaled-up to ecosystems level, can be interpreted as a propensity to persist (i.e., 

in terms of ecosystem stability and resilience (Bouchard 2013a, 2014 in Dussault and 

Bouchard, 2016)).  

In the context of AQUACROSS, ecosystem function is defined as “a precise effect of a given 

constraint on the ecosystem flow of matter and energy performed by a given item of 

biodiversity, within a closure of constraints. Ecosystem functions include decomposition, 

production, nutrient cycling, and fluxes of nutrients and energy”. Ecosystem functions differ 

from ecosystem processes, as these are a “physical, chemical or biological action or event 

that link organisms and their environment. Ecosystem processes include, among others, 

bioturbation, photosynthesis, nitrification, nitrogen fixation, respiration, productivity, 

vegetation succession”.  

In the process of implementing an EBM approach, it is essential that the measures of 

ecosystem functioning can be correlated both with measures of biodiversity of ecosystems 

(Hooper et al., 2005; Cardinale et al., 2006) on one side and with measures of ESS (Harrison 

et al., 2014) on the other side. Section 2.5.3 will present the approach to the selection of EF 

potential measures to be adopted. 

Ecosystem Services 

In the scope of AQUACROSS AF, ESS are the final outputs from ecosystems that are directly 

consumed, used (actively or passively) or enjoyed by people (see Tables 8 to 10). In the 

context of CICES they are biologically mediated. (Human environmental interactions are not 

always ESS, e.g., maritime traffic, tourism activities). This concept tries to bring together 

previous definitions.  

ESS have been defined as ‘the benefits people obtain from ecosystems’ (MA, 2005). The 

ecosystem service approach aims to recognise and make visible the value of nature (TEEB, 

2010b), considering the ‘direct and indirect contributions of ecosystems to human well-

being’. In this context the concept of ecosystem goods and services’ is synonymous with ESS. 

In the context of Action 5 of the EU2020 Biodiversity Strategy (Maes et al., 2014) the two 

previous definitions are acknowledged, and the service flow (see Figure 11) refers to the 

‘actually used service’. The benefits to society include those that are passively obtained but 

essential to human survival (e.g., climate regulation), those that are actively obtained and of 
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critical importance (e.g., food), and those that are not essential but enhance our existence 

either actively or passively (e.g., aesthetics) (Kremen, 2005).   

While some assessments consider ESS from the supply-side, considering the capacity of the 

ecosystem to supply services (e.g., services supplied by kelp forests, Smale et al., 2013), 

others take an economic perspective, the demand-side (e.g., the value of recreational fishing, 

Toivonen et al., 2004), whilst some evaluate both supply and demand (e.g., Burkhard et al., 

2012). 

As part of the development of an operational AF, an operational definition of what an 

ecosystem service is, and how this relates to the ecosystem is required. The definition and 

typology of ESS has been identified as being an important criterion, but often a major 

weakness, in current frameworks for the assessment of ESS (Nahlik et al., 2012). In different 

studies, ‘services’ can sometimes refer to ecosystem functions, services or benefits (Böhnke-

Henrichs et al., 2013). In the AQUACROSS approach, though, each of the steps will be clearly 

defined and kept separately (Figures 10 and 11), as also recommended by several authors 

(e.g., Potschin and Haines-Young, 2011; Liquete et al., 2013; Böhnke-Henrichs et al., 2013; 

Culhane et al., 2016; Lillebø et al., 2016). 

In some cases the concept of ESS is considered as one part of the concept of ‘natural capital’, 

which is taken to include ESS, non-renewable resources and renewable resources (de Groot et 

al., 2010; EEA, 2015b). This implies, although not always explicitly stated, that ESS are the 

biologically mediated benefits that people get from nature i.e. that the service is underpinned 

by biological components and biologically mediated processes or functions. For example, in 

the application of ecosystem service typologies and assessments such as the Millennium 

Ecosystem Assessment (MA, 2005), The Economics of Ecosystems and Biodiversity (TEEB, 

2010b) and System of Economic and Environmental Accounts (SEEA, 2012), in practice, these 

systems focus on those services that are underpinned by a connection to biodiversity and the 

biological processes and functions of the system (Haines-Young and Potschin, 2012).  

This distinction between biologically-mediated services and abiotic outputs was recognised 

in CICES (Haines-Young and Potschin, 2012), which is the EU reference classification. While 

the role of biodiversity contributing to human welfare is fundamental, abiotic outputs (such 

as wind energy or minerals) also contribute benefits, and these should be accounted for 

(Haines-Young and Potschin, 2012; Lillebø et al., 2016). The benefits people get from 

ecosystems rely, to different degrees, on biological or abiotic parts of the ecosystem. In 

moving forward, CICES created a separate but complementary typology of abiotic outputs to 

facilitate their assessment, but in keeping with previous work (MA and TEEB), focused mainly 

on the biologically mediated services (Haines-Young and Potschin, 2012). While initially CICES 

recommended that all outputs are considered ‘ESS’ with a qualification specifying the level of 

dependency on biodiversity (Haines-Young and Potschin, 2012), the final iteration of CICES 

recommended that only those outputs reliant on living processes should be included as ESS, 

therefore excluding abiotic outputs from being considered ESS (Haines-Young and Potschin, 

2012). This focus on biologically mediated services has been further emphasised through the 

adoption of the CICES classification system in the Mapping and Assessment of Ecosystem 
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Services (MAES) in Europe, which, so far, only considers the biologically mediated services for 

support of the EU Biodiversity Strategy i.e. those services which are associated with and 

dependent on biodiversity (Maes et al. 2013, 2014, 2016).  

Despite this broad consensus in the current policy relevant assessments of ESS, it is 

recognised that this definition of services (biologically mediated) will not satisfy all and that 

future assessments would benefit from being integrated, accounting for biological and 

abiotic outputs of ecosystems (Haines-Young and Potschin, 2012). There are important 

arguments supporting the inclusion of abiotic outputs of the ecosystem, as they can have 

implications for spatial planning, management and decision-making (Armstrong et al., 2012; 

Kandziora et al., 2013; Sousa et al., 2016; Lillebø et al., 2016). The provisioning of services 

should reflect changes to ecosystem state (e.g., Böhnke-Henrichs et al., 2013; Haines-Young 

and Potschin, 2012). This means that to be considered a service, a change in state of the 

ecosystem can result in a change in the supply of a service. This is true of biologically 

mediated services, for example, a change in abundance of commercial fish populations has 

an impact on the supply of seafood. However, a change or a difference in the abiotic 

conditions can also lead to a change in the supply of abiotic services. 

The AQUACROSS definition of ESS encompasses the goods and services people get from the 

ecosystem more broadly, such as the abiotic outputs that are not affected by changes in 

ecosystem state (e.g., oil and gas, salt, aggregates) (EEA, 2015b). The exploitation of abiotic 

outputs, in addition to the use of the ecosystem for economic activities (i.e., space for 

activities to occur), can have an impact on the state of the ecosystem and thus the potential 

supply of services, but are not affected themselves by the state of the biological components 

of the ecosystem. However, to build realistic scenarios for conservation and management 

purposes considering economic drivers, it is necessary to account for all services, namely the 

biologically mediated ESS and the abiotic outputs. In AQUACROSS, we aim to create a wide 

assessment of all services and benefits people get from nature, thus we include both the 

services dependent on biodiversity as well as those reliant on purely physical aspects of the 

ecosystem. The AF to be developed and tested within the AQUACROSS will account for both 

as in Tables 8 to 10. 
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Table 8: Ecosystem services, considering both biotic and abiotic dimensions, for the 

Provisioning category following CICES classification  

Ecosystem services Abiotic outputs from ecosystems 

Provisioning Abiotic Provisioning 

Division Group 

(includes the respective classes) 

Group Division 

Nutritional Biomass 

Wild plants and fauna; plants and 

animals from in situ aquaculture 

Mineral 

Marine salt 

Nutritional 

abiotic 

substances 

Water 

Surface or groundwater for 

drinking purposes 

Non-mineral 

Sunlight 

Materials Biomass 

Fibers and other materials from all 

biota for direct use or processing; 

genetic materials (DNA) from all 

biota 

Metallic 

Poly-metallic nodules; 

Cobalt-Rich crusts, 

Polymetallic massive 

sulphides 

Abiotic 

materials 

Water 

Surface or groundwater for non-

drinking purposes 

Non-metallic 

Sand/gravel 

Energy Biomass Renewable abiotic energy 

sources 

Wind and wave energy 

Energy 

Non-renewable abiotic 

energy sources 

Oil and gas 

Source: adapted from Haines-Young and Potschin, 2012 
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Table 9: Ecosystem services, considering both biotic and abiotic dimensions, for the 

Regulating and maintenance category following CICES classification  

Ecosystem services Abiotic outputs from ecosystems 

Regulating and maintenance Regulating and maintenance by abiotic 

structures 

Division Group 

(includes the respective classes) 

Group Division 

Mediation of 

waste, toxics 

and other 

nuisances 

Mediation by biota By natural chemical and 

physical processes 

Atmospheric dispersion and 

dilution; adsorption and 

sequestration of waters in 

sediments; screening by 

natural physical structures 

Mediation of 

waste, toxics 

and other 

nuisances 

Mediation by ecosystems 

Combination of biotic and 

abiotic factors 

Mediation of 

flows 

Mass flows By solid (mass), liquid and 

gaseous (air) flows 

Protection by sand and mud 

flats; topographic control by 

dunes and cliffs of wind 

erosion 

Mediation of 

flows by 

natural abiotic 

structures 

Mediation of 

flows by 

natural abiotic 

structures 

Liquid flows 

Gaseous/air flows 

Maintenance of 

physical, 

chemical, 

biological 

conditions 

Lifecycle maintenance, habitat 

and gene pool protection 

By natural chemical and 

physical processes 

Sea breezes 

Maintenance of 

physical, 

chemical, 

abiotic 

conditions 

Pest control 

Soil formation and composition 

Water conditions 

Atmospheric composition and 

climate regulation 

Source: adapted from Haines-Young and Potschin, 2012 
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Table 10: Ecosystem services, considering both biotic and abiotic dimensions, for the 

Cultural category following CICES classification  

Ecosystem services Abiotic outputs from ecosystems 

Cultural Cultural settings dependent on aquatic 

abiotic structures 

Division Group 

(includes the respective classes) 

Group Division 

Physical and 

intellectual 

interactions with 

biota, ecosystems, 

and seascapes 

[environmental 

settings] 

Physical and experiential interactions Physical and 

intellectual 

interactions with 

land-/seascapes 

[physical settings] 

Experiential use of biota and 

seascapes; physical use of 

seascapes in different 

environmental settings 

Experiential use of 

seascapes; physical use of 

seascapes in different 

physical settings 

By physical and experiential interactions or intellectual 

and representational interactions 

Intellectual and representational interactions 

Scientific; education, heritage; aesthetic; entertainment 

Spiritual, symbolic 

and other 

interactions with 

biota, ecosystems, 

and seascapes 

[environmental 

settings] 

Spiritual and/or emblematic 

Symbolic; sacred and/or religious 

Spiritual, symbolic 

and other 

interactions with 

land-/seascapes 

[physical settings] 
Other cultural outputs 

Existence; bequest 

Source: adapted from Haines-Young and Potschin, 2012 

As above, the ecosystem service approach aims to recognise and make visible the 

value of nature (TEEB, 2010b), considering the ‘direct and indirect contributions of 

ecosystems to human well-being’. However, an increasing number of authors (e.g., Mace et 

al., 2011; Haines-Young and Potschin, 2012; Potts et al., 2014) have followed Fisher et al. 

(2008) who nest within the broad definition of ESS ‘final’ services and ‘intermediate’ services. 

In the context of the EU Biodiversity Strategy to 2020 the flow of ESS refers to the ‘actually 

used service’, the ‘final’ services. The rationale for this division is to avoid the double 

counting of intermediate (or supporting) services in the valuation step of the process.  

The CICES classification of services (Haines-Young and Potschin, 2012) provides the following 

definitions for ‘final services’: 
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“Final ecosystem services are the contributions that ecosystems make to human well-being. 

These services are final in that they are the outputs of ecosystems (whether natural, semi-

natural or highly modified) that most directly affect the well-being of people. A fundamental 

characteristic is that they retain a connection to the underlying ecosystem functions, 

processes and structures that generate them”. 

Despite some typologies explicitly stating that the typology consists only of final services, 

there is still ambiguity related to some the actual services included, in particular regulation 

and maintenance services, as there are different interpretations of services and whether they 

are final or intermediate. These different interpretations may be required for different 

assessments in different contexts (Hattam et al., 2015). This debate has not reached 

consensus in the literature and is on-going. However, we do not consider this to be 

prohibitive in the development of an operational framework which includes ecosystem service 

assessment provided there is the awareness of the potential for any double counting at the 

valuation stage. Furthermore, the CICES classification, which arguably includes intermediate 

services, is nevertheless comprehensive and, thus, a better reflection of all of the ways the 

ecosystem benefits society than other typologies, which are approached strictly from an 

economic-valuation perspective. 

In summary, hardly any artificial “classification will be able to capture the myriad of ways in 

which ecosystems support human life and contribute to human well-being” and “no 

fundamental categories or completely unambiguous definitions exist for such complex 

systems” (de Groot et al., 2010). 

Supply versus demand of ecosystem services 

The assessment of ESS can be approached from the supply side – the potential or capacity of 

the ecosystem to supply services, whether or not it is used, or the demand side – the services 

people ask from the ecosystems whether they are actually provided or not (see Section 2.1). 

One can say, therefore, that a ‘supply side’ assessment based on ecosystem capacity 

considers how the state of the ecosystem is affecting the generation of the actually used 

services (Burkhard et al., 2012) and the potential to provide more and better services for 

present and future generations.  

While the capacity of the ecosystem to supply services is tightly linked to the state of the 

ecosystem (biodiversity and ecosystem processes and functions), the demand and actual use 

of services can be decoupled from the state of the ecosystem, as they are a clear outcome of 

social processes. For example, a study of recreational clam digging found most activity 

occurred at easily accessible sites (where there were parking facilities) even though more 

valuable stocks were present in other (less accessible) locations (O’Higgins et al., 2010).  

A change in ecosystem state and biodiversity can lead to a change in the supply of services 

but not in the demand of services. However, the detrimental impacts of the use of services 

can, in turn, lead to a change in ecosystem state and biodiversity and to a change in the 

supply of services. The demand for ESS, including the use of abiotic natural capital (e.g., 

aggregates), or the use of ecosystem ‘space’ for economic activities – can affect the supply of 



 

118 Understanding causal links between biodiversity, ecosystem functions and services 

ESS through alterations in the state of species and habitats and biodiversity overall, and are 

considered in Section 2.4. 

2.5.3  Identification of relevant indicators and associated metrics 

As part of the development of an EBM operational AF, classification methods to be applied to 

each compartment (i.e., BD, EF, and ESS) are required, which enable furthermore establishing 

links between each other. As well, a clear and common understanding of the concepts of 

indicators, indices and metrics is required.  

Since ESS depend on the ecosystem functions provided by biodiversity, there is a need for 

ecosystem-based approaches consider the causal links between biodiversity, ecosystem 

functioning and ESS, and also a need to identify indicators and metrics relevant for aquatic 

ecosystems that may be used to establish their state. A clear definition of each part of these 

BD-EF-ESS relationships facilitates therefore the identification of appropriate indicators 

(Böhnke-Henrichs et al., 2013; Liquete et al., 2013). One of the advantages of having a set of 

indicators is that they aid organizing the type of information needed for the assessment, and 

also allow quantifying the relationships between the different components and the flows 

across the AF. Indicators can also provide insight into variations in resilience by reporting e.g. 

on ecosystem recovery rates after disturbance (Lambert et al., 2014; Rossberg et al., 2017). 

This in turn can be used to assess the sustainability of human activities’ impacts and support 

the development of appropriate management strategies (Lambert et al., 2014; Lillebø et al., 

2016). 

However, even with clearly defined and segregated components (Böhnke-Henrichs et al., 

2013; Liquete et al., 2013) of the BD-EF-ESS (Section 2.5.2), the complexity of the ecological 

systems, where structure and processes combine in a myriad of ways to perform functions 

and to secure ESS supply, still makes the selection of indicators a difficult process in practice 

(e.g., Maes et al., 2014; Lillebø et al., 2016). 

Guidance will be provided for selecting biodiversity components, ecological functions and ESS 

and respective indicators in ways that the assessment reflects the complexity of social-

ecological interactions (Gómez et al., 2016; Saunders and Luck, 2016). It is therefore crucial 

that the processes described in Section 2.4 are also accounted for in order to achieve a 

meaningful selection of ecosystem components and associated indicators. In addition, having 

a list of indicators, as comprehensive it may be, does not ensure by itself a coherent 

evaluation of how the ecosystem state and functioning converge to secure the supply of ESS. 

Nevertheless, criteria to identify and test the quality of indicators are available and can be 

used (Heink et al., 2016), namely the framework from the Biodiversity Indicators 

Partnership22; and the framework to test quality of indicators proposed by Queirós et al. 

(2016). 

                                           
22 For more information visit: http://www.bipindicators.net/ 

http://www.bipindicators.net/
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This guidance aims also at promoting consistency throughout the case studies, such that a 

standardized approach may ultimately allow a comparison of BEF and BES relations identified 

across aquatic realms, contributing to understand whether they are interchangeable or 

ecosystem-specific (see Section 2.5.4). To operationalise this, the guidance will focus on: 

a) Defining comprehensive classifications (and developing relevant subcategories) pertinent 

for aquatic ecosystems, within each main theme: i.e. Biodiversity, Ecosystem Functions, 

and Ecosystem Services, since such subcategories will allow building meaningful causal 

networks between the different components of the framework. The classification systems 

will be tailored to the AQUACROSS needs, either by building on scattered approaches (as 

for Biodiversity and Ecosystem State assessment), or by developing new ones (as in the 

case of Ecosystem Functions), or by adapting existing ones (as the CICES Ecosystem 

Services classification enlarged to accommodate abiotic outputs).  

b) Providing lists of indicators, and/or sources of indicators, and allocate indicators within 

each theme classification (i.e., BD, EF and ESS) and respective subcategories; 

c) Identifying criteria for the selection of good indicators, relevant within each theme, and 

setting a de minimum approach to be applied across case studies; 

d) Providing recommendations for applying a holistic approach to the BD-EF-ESS, 

accounting for interactions, synergies, and trade-offs, when identifying causal links. 

Comprehensive classifications will be proposed, or adapted, for: 

 Biodiversity: the ecosystem components to be considered will build on the requirements 

of the various environmental policies in place, but will allow to adjust to case studies 

needs, accounting also for scale issues; 

 Ecosystem Functions: the most relevant functions in aquatic ecosystems will be 

identified, together with the associated ecological processes. While in our proposal the 

Ecosystem Functions categories defined are distinct and exclusive, the underlying 

ecological processes might be linked to more than one function category. A subsequent 

selection of appropriate EF indicators will measure the contribution of the function to 

providing an ecosystem service. 

 Ecosystem Services: AQUACROSS will follow the recently adopted MAES typologies of ESS 

(Maes et al., 2013), which build on latest version (V4.3) of the CICES approach (Haines-

Young and Potschin, 2012; Maes et al., 2014, 2016), as this ensures comparability with 

the approaches being followed by Member States. CICES differs from the previous ESS 

classifications, namely MA and TEEB, in that, to avoid double counting, it recognises only 

three categories (called 'sections') of 'final' ESS: provisioning services, regulation and 

maintenance services, and cultural services. In addition, we propose that the CICES 

accompanying matrix of abiotic outputs from the ecosystems are also taken into 

consideration when applying the AQUACROSS AF. In this sense, listed categories are 

extended as shown in Tables 8 to 10. 
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Indicators 

Preliminary lists of indicators (and associated metrics, accompanied with the respective 

definitions) have been elaborated accounting for indicators outlined by key legislation 

identified in the project and identified in relevant scientific literature. For each component of 

the BD-EF-ESS relationship the possible sources and examples of indicators will be referred. 

However these are not intended to be prescriptive lists and each case study should select the 

indicators deemed more adequate for the context and purpose of study (i.e., the aquatic 

realm, the ecosystem features, the scale(s) of study, the identified pressure(s), the ESS being 

scrutinized). This means that the selection of indicators at this stage should be integrated 

and in line with the other stages of the AF, so that a successful flow of information is 

achieved (see Section 2.1).  

As discussed in Section 2.4, indicators for the DPS (state in the AQUACROSS AF encompasses 

BD and EF) part of the DPSIR will be established based on the method developed for marine 

ecosystems in the ODEMM project (see Section 2.4 for more detail). Subsequently, it will be 

ensured that the indicator list developed under this stage of the assessment (i.e., for 

biodiversity, ecosystem functioning and ecosystem services) is compatible and can be linked 

to the DPS components of the previous stage. However, as discussed in 2.5.1, state metrics 

will not always align between appropriate metrics to assess the change in state due to a 

pressure, and those metrics appropriate for assessing the ecosystem’s capacity to supply 

services. 

Regarding biodiversity and ecosystem functioning, numerous indicators and indices are 

available for assessing the state of aquatic ecosystems (see for example the following 

reviews: Piet and Jennings, 2005; Piet et al., 2006; Birk et al., 2012; ICES, 2014, 2015; 

Hummel et al., 2015; Piroddi et al., 2015; Teixeira et al., 2016), often developed in response 

to legal requirements (e.g., the Water Framework Directive (WFD), the Marine Strategy 

Framework Directive (MSFD), the EU2020 Biodiversity Strategy SEBI indicators, the Red List 

Index for European species and the Habitat Directive (HD)). Thus, for aquatic ecosystems, it 

will be essentially based on the requirements set by these legal frameworks that Member 

States will map and assess the state of their ecosystems, as required also by the EU 

Biodiversity Strategy 2020 Action 5. The adoption of such indicators within the case studies 

when applying the AQUACROSS AF not only favours a relevant link with European policy, but 

ensures also that data are likely to be available for indicators and metrics referenced within 

those legal documents (Hummel et al., 2015; Berg et al., 2015; Patrício et al., 2016a and b; 

Teixeira et al., 2016). 

Available indicators include those from structural to functional approaches, ranging from the 

sub-individual level to the ecosystem level, and capturing changes and processes operating 

at different spatial scales. The scope of the indicators available is thus wide and therefore it 

should be able to cover the needs of the different case studies’ needs. Nevertheless the 

development of new indicators development could be justified within the AQUACROSS 

project, and would complement gaps in the existing resources. This might be particularly 

relevant in the case of functional indicators, traditionally not incorporated in applied 
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management, but where recent research is thriving with new approaches to measure 

functionality (see Section 2.5.2). 

Regarding ESS, an initial list of indicators was obtained from the comprehensive review 

elaborated by Egoh et al. (2012) and complemented with the recent list of MAES indicators for 

ESS (Maes et al., 2014, 2016), and with Hattam et al. (2015) specific indicators for marine 

environment. Also, to accommodate the inclusion of abiotic outputs, potential indicators will 

be identified and added to the lists. As mentioned before, the selection of specific ESS 

indicators will be driven by the case studies’ context and needs.  

Lessons learnt from this application of indicators to the showcase case studies may lead to an 

adaptation of the AF and/or the overall concepts of AQUACROSS. 

2.5.4  Methods to analyse causal links 

Among the multitude of available multivariate analysis tools and methods, discriminant 

analysis (DA) may be used to examine relationships between both nominal and continuous 

variables. Like many other multivariate methods, DA tries to reduce statistical dimensionality 

by extracting the dominant gradients of variation from a set of multivariate observations. 

However, the most distinctive aspect of DA is that it allows a priori designation of samples 

into groups. DA weights the contribution of variables by their effectiveness in minimizing the 

difference within each predefined group while maximizing differences among groups (e.g., 

Palmer et al., 2009). DA will hence allow to optimally comparing data from existing BEF and 

BES studies available in the open literature by considering variables that influence reported 

BD-EF-ESS relationships (e.g., those identified from the literature review mentioned in Section 

2.5.1). 

In the past decade, several meta-analyses on data obtained from manipulative experimental 

BEF experiments have been conducted to attain evidence for BEF relationships (Cardinale et 

al., 2011). By considering the variables identified from the DA, a refined meta-analysis on 

data from existing BEF and BES experiments may be conducted. This may thus be expected to 

lead to less variable functions and hence a more precise estimation of the causal links 

between biodiversity, ecosystem functioning and ecosystem services.  

The most suitable metrics and models from previous analyses (see also Section 2.5.3) will be 

selected for integration in the management tool by direct integration if relevant models are 

identified, or after informing Neural Networks Models to forecast results of biodiversity 

causality links. Causality functions linking biodiversity and ecosystem functions, derived with 

the help of these modelling frameworks, will be integrated into the ARIES ecosystem services 

modelling platform to characterise the link between ecological function and societal benefits 

and to provide a bridge to ESS trade-off analysis. 
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A qualitative assessment of uncertainty will be carried out involving: 

 Compilation of a comprehensive list of all possible sources of uncertainty in each model 

(e.g., Mastrandrea et al., 2011);  

 The use of classification categories to help produce a list (listing will be prioritized over 

classification);  

 The introduction of other categories as necessary; 

 Components of the full modelling chain will be used to enable uncertainty to be fed 

through. 

The multidimensional nature of causality relationships will be addressed with multivariate 

modelling approaches to derive biodiversity and ecosystem functions and services across 

large regions. Several experimental approaches have been used in the last 20 years to 

demonstrate causality links between BD-EF-ESS. Since biodiversity has already been 

recognised as a multidimensional concept, BEF assessment will not rely solely on species 

richness but will also consider the functional trait composition of biological assemblages 

using multi-metric biodiversity indices (c.f. Sections 2.5.2 and 2.5.3). These will consider 

aspects related to species composition whose importance is demonstrated, e.g. i) relative 

contribution of dominant vs. minor species, ii) environmental context, iii) density dependence 

and community structure. AQUACROSS will also explicitly incorporate, to the extent possible, 

the causal effects of structuring abiotic (environmental heterogeneity) and biotic (movement, 

dispersal) processes that are key to species co-existence and vital to the maintenance of 

species diversity. The multidimensional nature of causality will be addressed with multivariate 

modelling approaches and used to derive BEF across large regions through the use of 

generalised dissimilarity modelling (GDM) and generalised diversity-interactions models 

(GDIM) as they are nonlinear models that address effects of species interactions on 

biodiversity patterns. GDM will be used to analyse spatial patterns of turnover in community 

composition (beta diversity), across larger regions, while accommodating the types of 

nonlinearity commonly encountered in large-scale ecological data sets. This will facilitate 

dealing with ecological gradients and associated ecosystem functions.  

Integrated models will also be established as they can highlight priorities for the collection of 

new empirical data, identify gaps in our existing theories of how ecosystems work, help 

develop new concepts for how biodiversity composition and ecosystem function interact, and 

allow predicting BEF relations and its drivers at larger scales (Mokany et al., 2015; Queirós et 

al., 2015). Such models could also form components within larger ‘integrated assessment 

models’, improving consideration of feedbacks between natural and socioeconomic systems 

(Mokany et al., 2015), ultimately aimed at better informing management as is seen in the 

framework underlying the Intergovernmental Platform on Biodiversity and Ecosystem Services 

(IPBES) (Díaz et al., 2015). 

 



 

123 Crosscutting issues 

2.6 Crosscutting issues 

While previous sections of this document outline different elements of the AQUACROSS 

analytical approach, certain aspects of analysis may benefit from a common macroscopic 

overview. This Chapter provides an overview of commonalities in data structure under the 

AQUACROSS Information Platform (hereafter IP) as well as considering some common sources 

of uncertainty and presenting some conceptual tools that can be used qualitatively or 

quantitatively to facilitate the analysis of systems adopting a ‘bigger picture’ approach.  

Besides dealing with uncertainty, some major challenges on how sources of datasets could 

affect understanding are shown in Syphard et al. (2011) and O’Higgins et al. (2014a and b) 

regarding different spatial and temporal resolution; Yesson et al. (2007), Jetz et al. (2012), 

Kwon et al. (2016) and La Salle et al. (2016) regarding data integration of various taxon-level 

data types (genome, morphology, distribution and species interactions) as well as spatial and 

temporal scales and Vandepitte et al. (2010,  2015) regarding quality control criteria.  

2.6.1  Introduction: going beyond data and metrics – information 

flows for analytical purposes 

Lead authors: Alejandro Iglesias-Campos, Ana Luisa Barbosa, Juan Arévalo (IOC-UNESCO) 

Making the AQUACROSS Concept operational requires the integration of information within 

the AQUACROSS Architecture (see above 3) at the different spatial and temporal scales. The 

information layers are a key component of the AQUACROSS Architecture for analysing the 

complex interaction between social and ecological systems and finding effective, efficient, 

and socially acceptable EBM responses (Gómez et al., 2016).  

The AQUACROSS IP is the central entry point for project partners and scientists to publish and 

share the data on different types of aquatic ecosystems, biodiversity and EBM practices. A 

significant amount of the data that will be gathered through the different project case studies 

will have a spatial component. Hence, the AQUACROSS IP should be able to provide all the 

functionalities for managing spatial data in an efficient and flexible way. The ultimate goal of 

the AQUACROSS IP will be to share the scientific knowledge on Aquatic EBM by means of a 

Spatial Data Infrastructure for aquatic ESS and biodiversity connected to other existing 

relevant information platforms. 

The AQUACROSS IP is based on the open-source CKAN data portal platform. CKAN is a tool 

for making open data websites. It contains a powerful data management system and is aimed 

at data publishers wishing to make their data and associated metadata open and available, 

helping to manage and publish their data. Once data is published, users can use its multi-

faceted search features to browse and find the data they need, and preview it using maps, 

graphs and tables. National and local governments, research institutions, and other 

organisations that collect data use CKAN. CKAN is currently the technical solution 
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implemented by the European Commission to publish pan-European open datasets across 

the EU. 

Within CKAN, data is published in units called “datasets”. A dataset contains metadata about 

the data, and one or more “resources” which hold the actual data. CKAN can accept data in 

any format, including the formats of CSV or Excel spreadsheets, XML, PDF, images, RDF, 

GeoTIFF, Shapefiles, etc. CKAN can store the resource internally or store it simply as a link to 

external resource on the Internet. These CKAN resource page can contain one or more 

visualisations of the resource data or file contents (a table, a bar chart, a map, etc), which are 

commonly referred to as resource views. 

AQUACROSS information  

The AQUACROSS datasets are divided into thematic categories following the AQUACROSS AF: 

1 Drivers of change and pressures on aquatic ecosystems 

2 Biodiversity, ecosystem functions and ESS 

3 Assessment of scenario and prioritisation measures 

4 Ecosystem-based Management towards policy objectives 

The following categories describe typical and potential datasets under each category. The 

flows and links with the categories follow the relational chain proposed in the AF, which aims 

to facilitate the identification and selection of the information and indicators. The chain 

begins with a high level driver, the economic activity (direct driver), and associated pressure 

and a part of the ecosystem where that pressure can cause a change in state. This structure 

allows the selection of indicators of ecosystem state or pressure and identifies the human 

activity, which can be a focus of management (see Sections 2.4 and 2.5).  

Category 1: Data on drivers, pressures affecting aquatic 

ecosystems  

Drivers of ecosystem change 

This category will include the information related to the drivers that can change the structure 

and function of ecosystems and their capacity to provide ESS to meet the demand of food, 

energy, transport, space, tourism services and many other goods and services. The 

information used to analyse the drivers of ecosystem change are mainly based on the 

economic sectors or activities that benefit from the provision of water related ESS. This 

includes their value added (e.g., Gross Value Added (GVA) of fisheries, agriculture, value 

added of the maritime manufacturing sector); employment per economic activity (e.g., in 

agriculture, fisheries, aquaculture, coastal tourism) and the use of provisioning ESS (e.g., 

freshwater resources per inhabitant, groundwater and surface water abstraction, tourism 

accommodation establishments, volume of goods handled in maritime transport, extraction 

of salt, fish). All drivers of ecosystem change must be properly understood at different 

http://open-data.europa.eu/en/data/
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temporal and spatial scales (Section 2.4). Data sources on drivers of ecosystem change cover 

many statistics produced by Eurostat, national and regional statistics offices on water use by 

economic sector, fisheries, aquaculture, catch, maritime transportation, labour productivity, 

consumption and investment and statistical classification of economic activities (NACE).  

Pressures over ecosystems and biodiversity  

According to the AQUACROSS Concept and the AF, significant pressures are those that result 

in a change in ecosystem state leading to a change in the functioning of the ecosystem and 

thus can impact both biodiversity and human welfare. Pressures can be physical, chemical or 

biological. The linkage framework integrated into the AQUACROSS Architecture (see above 3) 

facilitates the identification of indicators needed to describe the system from the demand 

side. The AQUACROSS AF requires the identification of the pressures for each driver and type 

of activity identified. The information on pressures across aquatic realms should cover the 

pressures categories proposed in the AF: biological disturbance, chemical change, hazardous 

substances, physical change, pollution and climate change. The information related to driver-

pressure across the different aquatic realms would be essentially based on the reported data 

under the Water Framework Directive (WFD), Habitats Directive (HD) and the Marine Strategy 

Framework Directive (MSFD).  For example, fishing mortality, occurrence and spatial 

distribution of invasive species, nutrients concentration in the water column are some of the 

indicators proposed in the Good Environmental Status (GES) to measure the pressures on the 

marine environment.  

Status of the ecosystems and biodiversity  

Data on the assessment of the biodiversity and ecosystem state are also sourced from EU 

reporting obligations: WFD, MSFD, HD. At European level, state indicators are reported in the 

context of the European Environmental Agency a core set of indicators, SEBI indicators, the 

WFD ecological status, environmental status (MSFD), species and habitat conservation status 

and red list index (HD art. 17). Under the marine ecosystem and biodiversity, the GES 

descriptors indicators are strongly related to biological quality elements that indicate the 

integrity of the ecological system. Examples of dataset are on the abundance and distribution 

of selected species, population abundance, habitat distribution and physical, hydrological 

and chemical condition.  

For instance, data collection under WFD has outputs and challenges such as intercalibration 

of river basins, gaps for transitional waters, multi-pressure context, or taking into account 

uncertainties (Reyjol et al., 2014). 

Beside the reported data by the Member States, there are several relevant sources that could 

be used for the assessment of pressures and ecosystem and biodiversity status. These data 

can be found on scientific data portals, such as, the European Marine Observation and Data 

Network (EMODnet), Copernicus Marine environment monitoring service and national and 

regional Spatial Data Infrastructures (SDI) (e.g., Marine Scotland, Welsh Government, REDIAM-
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Andalucia). O’Higgins et al. (2016) have reviewed many of the relevant aspects of European 

Spatial Data infrastructure. 

Project partners will be requested to post links to these data sources on the IP. The majority 

of these datasets are expected to be available through both OGC web services and available 

for download in raster or shapefile formats. 

Category 2: Data on ecosystem functions and services 

Ecosystem functions (EF) 

This category will include the information related to the ecosystem functions of the aquatic 

ecosystems. Ecosystem functions are usually organised into three categories: 1) production; 

2) biogeochemical cycles; and 3) structural. Ecosystem functions related information quantity 

the stocks of materials and rates of processes involving fluxes of energy and matter between 

trophic levels and the environment, for example, nutrient levels, water retention of soils, 

water and air purification, habitat provision, carbon sequestration, extension and health of 

seagrass, among others.   

Novel issues, such as remote sensing characterization of ecosystem functioning, are likely to 

come up in further discussions about information and data (Cabello et al., 2012). 

Ecosystem services (ESS) 

This category will include information related to the ESS assessment. Under the category of 

the Ecosystem Services the information derived will follow the CICES (Haines-Young and 

Potschin, 2012), the indicators and metrics were categorized using the EU MAES ESS 

categories adopted from the CICES: 1. Provisioning; 2. Regulating and Maintenance; and 3. 

Cultural. The dataset will also include indicators for the current assessment of ESS, divided 

into: 

 Freshwater: e. g. water consumption for drinking, freshwater aquaculture production, 

surface water drinking, water abstracted, nutrients loads, waste treatment, sediment 

retention, flood prevention, Carbon sequestration (riparian forest), among other 

indicators; 

 Coastal and Marine: e.g. nutrient load to coast, heavy metal and persistent organic 

pollutants deposition, oxygen depletion risk, composite indices based on extent of 

selected emerged, submerged and intertidal habitats, coastline slope and coastal 

geomorphology, wave regime, tidal range, relative sea level, storm surge, species 

distribution, C stock, C sequestration, presence of iconic/endangered species. 

Besides this differentiation by realms, in order to integrate them, it may be meaningful to 

consider the inclusion of datasets, maps and indicators that refer to the delivery of ESS –

supply side, flows of ESS- and to the demand side – benefits of ESS-, following the 

AQUACROSS Architecture. 
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However, since ESS delivery is functionally interlinked, there are difficulties on mapping ESS 

provision linked to individual ecosystem functions (e.g., Rees et al., 2012). Remote sensing 

data collection and use could be helpful to produce spatially-explicit assessments and 

valuation of ESS, (e.g., Araujo et al., 2015). 

Finally, the differing data priorities between scientists and decision-makers could likely result 

in dataset biases or affect IP usefulness (e.g., Goldsmith et al., 2015). 

Category 3: Related data on the assessment of scenario and 

prioritisation measures 

This category will include the main outcomes of the assessment of scenarios including the 

results from modelling aquatic biodiversity and ESS to forecasting their development based 

on different scenarios and /or the optimisation of their spatial allocation in the case study. 

The data derived under this category depends very much on the case study and the 

development of scenarios, i.e predictive scenarios with limited choices of relevant driver 

variation for currently existing models or explorative and normative scenarios integrating 

social-ecological dynamics. The datasets we envisage under this category are largely the 

ones that will be generated in the course of the AQUACROSS project. Nevertheless, we mostly 

expect the outcomes to be available as map products. The information derived might refer to 

changes in drivers (e.g., increase of the domestic water abstraction according to population 

projections) or to the implementation of alternative policies (such as setting biodiversity 

strategy targets). This includes, for example, data on projected drivers and pressures, the 

potential habitat suitability of a species in a given area; data on their impact on the 

ecosystem functions and services, on different priority areas according to actions needed to 

overcome biodiversity impacts (or protect current biodiversity) and the actions needed to 

provide the targeted ESS delivery. 

Some illustrations of examples above are included in the literature (e.g., Bocedi et al., 2014; 

Candela et al., 2016; Pistocchi et al., 2016). Additionally, the combination of data and models 

for cross-scale comparisons might be considered (e.g., Legendre and Niquil, 2013; Thuiller et 

al., 2015). 

Category 4: Ecosystem-based management towards policy 

objectives 

This dataset will include the main outcomes of the EBM to the case studies, including all 

types of information and indicators that will help monitoring and informing policy-makers 

about the effects of the responses or actions taken by society, individually or collectively. 

More specifically, these indicators will provide information on designated areas for policy 

intervention, such as multi-zoning planning according to the spatial prioritization of the 

different scenarios. In addition to this, distance-to-targets indicators could also be used to 

quantify the efforts required to reach policy targets and compare the differences of the 

scenarios in terms of important areas of biodiversity and the provision of ESS. 



 

128 Crosscutting issues 

Examples on how datasets and information can help EBM and decision-making, are shown in 

Edwards et al. (2010), Hawkins et al. (2013), or Clavero and Villero (2014), regarding time-

series, and in Fontaine et al. (2015), regarding taxonomic resolution in datasets when 

delineating conservation units.  

While the AQUACROSS IP provides a location for the categorisation of data according to the 

themes described above as well as incorporating geographic information, it cannot provide 

the analysis required to integrate this information. For example, the EBM datasets (category 

4) will be developed based on analyses run outside of, and subsequently uploaded to, the 

platform. There are a number of papers dealing with different analyses to apply to datasets 

(e.g., Boehme et al., 2014). 

Regardless of the quality and availability of the case study data and the modelling tools for 

the project; uncertainties are unavoidable throughout the analytical process. 

2.6.2  Dealing with uncertainty 

Lead author: Nele Schwuirth, Peter Reichert (EAWAG) 

Major contributors: Gonzalo Delacámara (IMDEA), Carlos M. Gómez (UAH & IMDEA) 

Uncertainty is a critical factor at different stages of the assessment process. This section is 

intended to provide analytical approaches to address uncertainty and achieve robust 

solutions.  

Scientific support of societal decisions consists in investigating and communicating the 

degree of fulfilment of societal objectives achieved by suggested management alternatives 

(including the alternative of not taking an “explicit measure” and continuing with the past 

policy). This includes the creative process of finding alternatives that may have the potential 

of a high degree of achievement of the objectives. The process of scientific decision support 

is affected by many sources of uncertainty and it is important to consider and communicate 

these uncertainties in the decision support process. 

There are three main sources of uncertainty in societal decision support or policy advice: 

1 Uncertainty about societal preferences. 

Societal preferences can be derived from a policy analysis or can be elicited from the 

public or from representative stakeholders. Both processes bear uncertainty. Analysing 

policies might include some scope of interpretation, different policies might contradict 

each other, and it might be unclear how to trade-off between them. 

Since the society consists of a large number of individuals with diverging interests it is 

challenging to quantify and integrate their preferences. 

2 Uncertainty about the effect of suggested management alternatives. 

The estimation of the effect of management alternatives needs knowledge about the 

future socio-economic development, about the resulting changes of factors influencing 
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the system under investigation directly, and about the response of ecological and 

economic attributes to the alternative for given external changes. 

3 Uncertainty about the implementation of the chosen management alternative. 

Implementation of some alternatives may be more difficult than others for political or 

technical reasons. Ideally, this should be assessed also. 

 

These types of uncertainty occur related to different components of the SES. Figure 12 

illustrates the location of the three main sources of uncertainty along the DPSWR causal 

chain. 

In this section, we suggest how to consider these three main sources of uncertainty, we then 

discuss the evaluation of alternatives given these uncertainties, and we conclude with a 

“checklist” of how to deal with uncertainty in AQUACROSS. Most of the material summarized 

in this section is based on a recent review by Reichert et al. (2015) and the literature cited 

therein.   

Uncertainty in societal preferences 

In contrast to scientific prediction, which we try to make as objective as possible, societal 

preferences are subjective by nature and also change over time. In the current context, we 

mostly assume to support decisions within time frames over which the societal preferences 

do not change significantly. However, when suggesting adaptive management to consider the 

acquisition of scientific knowledge when revising earlier decisions, changed societal 

preferences can be considered at the same time. 

As outlined in Reichert et al. (2015), there are strong arguments for formulating individual or 

societal preferences as value or utility functions from decision analysis (Eisenführ et al., 

2010). Value functions quantify the degree of fulfilment of an objective on a scale from zero 

to unity. They are very flexible regarding the functional dependence of these preferences 

from attributes of the system under study. Utility functions in addition consider risk attitudes 

and can be built on elicited value functions (Dyer and Sarin, 1982; Reichert et al., op. cit.). 

The use of this description of preferences makes it possible to base decision support on 

Multi-Attribute Value Theory (MAVT) or, when extended to utility functions, on Multi-

Attribute Utility Theory (MAUT). 

Uncertainty ranges of elicited trade-offs used to specify value functions can either be elicited 

from stakeholders or estimated based on elicited value functions from different stakeholders 

that are merged to a “societal value function”. The resulting ranking of alternatives according 

to decreasing values or expected utilities can then be analysed regarding its sensitivity to 

these uncertainty ranges of the value functions. 
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Figure 12: Location of source of uncertainly along the DPSWR causal chain  

 

Source:  O'Higgins et al., 2014a 

Legend: 1- uncertainty about societal preferences. 2 Uncertainty about the effects of 

management alternatives. 3 uncertainties about the effectiveness of management. 

Uncertainty about the effect of suggested management 

alternatives 

In contrast to the societal preferences, the estimation of the consequences of suggested 

management alternatives and the uncertainty of these predictions is a scientific task that 

should be done as objectively as possible. Depending on the nature of the alternative (at the 

political, engineering or ecosystem manipulation level) this can involve social, engineering 

and natural sciences. 

As outlined in Reichert et al. (2015), there are many arguments in favour of describing 

uncertain scientific knowledge through a probabilistic framework. One of the main reasons is 

that this framework can be used to describe random (due to non-deterministic behaviour of 

the systems) and epistemic (due to our lack of detailed knowledge about all relevant 

mechanisms in the system) uncertainty of the behaviour of a system in a compatible way. 

This is important as aleatory uncertainty becomes epistemic once the random event is 

realised but the outcome was not yet observed. In addition, the probabilistic framework easily 

allows us to formulate conditional probabilities, which is very important when considering 

future scenarios or policy alternatives (Cox, 1946). Finally, the argument of avoiding sure loss 

if probabilities are made operational with indifference between lotteries, adds another 

argument for using the probabilistic framework (Howson and Urbach, 1989). 
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To ensure the use of the best scientific knowledge, intersubjective probabilities should be 

used (Gillies, 1991, 2000; Reichert et al., 2015). This means that prior probabilities should be 

defendable by being supported by multiple experts or literature references. In case of very 

high ambiguity, sets of probability distributions, so-called imprecise probabilities (Walley, 

1991; Rinderknecht et al., 2011, 2012, 2014), can be used instead of precise distributions. 

Bayesian statistics provides an ideal methodological framework for updating prior 

probabilities with actual observed data of a system. 

There are three main contributions to uncertainty about the consequences of suggested 

alternatives: 

a) Uncertainty about future socio-economic development. 

b) Uncertainty in the prediction of future (environmental) influence factors that might 

change in response to the future socio-economic development. 

c) Uncertainty in the response of ecological and economic attributes (indicators for the 

fulfilment of societal objectives) to management alternatives and the future 

environmental influence factors. 

These three contributions to uncertainty are addressed as follows: 

a. As the uncertainty about future socio-economic development is very large, it is best 

addressed by specifying potential scenarios for future development without specifying 

probabilities for these scenarios. 

b. Prediction of the future behaviour of (environmental) influence factors can then be made 

conditional on these scenarios. In the current context, this will mainly consist of a 

compilation of existing information (expert opinions, results of published studies, 

published model results, etc.) in a probabilistic framework. 

c. Prediction of the response of ecological and economic attributes relevant in the specific 

decision context will mainly be done by constructing models based on known 

mechanisms from the literature or from experts. Uncertainty is then considered through 

parameter uncertainty, intrinsic stochasticity of the model, and input uncertainty. 

Regarding the external influence factors, input uncertainty is given by the results from 

step b. Ideally, the model is formulated based on prior knowledge (often across similar 

systems) and updated based on observed data of the investigated system. 

If observation error is large (which is often the case for ecological systems), it is advisable to 

explicitly distinguish model and observation uncertainty. Inference can then be done by using 

the model including observation uncertainty and prediction to describe our knowledge about 

the true state rather than future observations. 

Uncertainty about the implementation of the chosen management 

alternative 

There may be considerable uncertainty regarding the political and technical implementation 

of the assessed alternatives. This is an uncertainty that is very difficult to quantify, and it may 
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be advisable to at least qualitatively discuss the potential for implementation. Implementing 

the second best alternative is usually much better than choosing the best one if there is a 

considerable chance that it may finally fail in the political implementation process. Also 

technically, a chosen alternative may have smaller positive effects if its implementation has 

deficits that were not accounted for when estimating the effects. Monitoring the state of 

implementation should become part of the management strategy. 

Making decisions based on uncertain outcomes - assessment of 

alternatives 

Once the different sources of uncertainty have been considered to quantify the uncertainty of 

attributes (indicators) that describe the fulfilment of the objectives, there are several ways of 

coming to a decision. 

The main criterion for ranking alternatives in MAVT/MAUT is maximizing the value or the 

expected utility among the alternatives. This requires that the trade-offs the decision-maker 

(society, stakeholders) is willing to make between the different objectives were quantified in 

the form of a multi-attribute value function. The uncertainty in attributes can then be 

propagated through the value function to get a probability distribution of the overall value for 

each alternative (under each scenario).  

If the degree of uncertainty between the alternatives is large compared to the differences 

between alternatives, the risk attitude can be taken into account to derive a final ranking 

between alternatives by transforming the values into utilities. Note that - in case of risk 

aversion - the risk attitude will only affect the final ranking between two alternatives, if the 

alternative with a higher expected value has a larger uncertainty than the other (Schuwirth et 

al., 2012). 

However, other criteria can and should be considered as well. Such criteria include: 

 Choosing alternatives that are robust to changes under the different scenarios of socio-

economic development; 

 Choosing alternatives with high consensus potential between different stakeholders 

(which might disagree about the trade-offs they are willing to make between objectives) 

(e.g., Schuwirth et al., 2012); 

 Applying the precautionary principle to avoid alternatives with a (quantified or 

unquantified) risk of unwanted outcomes; 

 In cases where the uncertainty of absolute predictions is very high, searching for 

significant changes caused by the management alternatives by analysing the dependence 

structure of the variables contributing to overall uncertainty (Reichert and Borsuk, 2005). 

Note that those criteria could be formulated as simple decision rules and applied in a 

qualitative way. Alternatively, they could be applied in a quantitative way by formulating them 

in the form of a (multi- or single attribute) value function.  



 

133 Crosscutting issues 

In addition, the process of evaluating suggested alternatives should stimulate a creative 

process of generating new alternatives, e.g. through combination of promising measures 

from different alternatives. These additional alternatives can then be evaluated as well and 

may lead to a better fulfilment of the objectives or higher consensus potential. Finally, the 

process of generating and evaluating alternatives should continue into the future to produce 

an adaptive management process. 

Checklist for dealing with uncertainty in AQUACROSS 

The checklist is grouped around the three major sources of uncertainty identified at the 

beginning of this section: 

1 Uncertainty about societal preferences. 

a) Were the societal preferences elicited from the relevant stakeholders or the public? 

b) Was the uncertainty of the preference quantification estimated? 

2 Uncertainty about the consequences of suggested management alternatives. 

a) Were scenarios about the future socio-economic development established? 

b) Were the changes in environmental influence factors for those scenarios and their 

uncertainty estimated? 

c) Were the responses of ecological and economic attributes of the management 

alternatives estimated and their uncertainty quantified? 

d) Were these uncertainties adequately considered in the decision support process? 

[Consideration of risk aversion, robustness against scenarios, etc.] 

3 Uncertainty about the implementation of the analysed management alternatives. 

a) Were technical or scientific risks of failure identified and were attempts made to 

minimise them? 

b) Was the (political) potential for implementation of the suggested management 

alternative estimated and considered in the recommendation? 
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2.6.3  Tackling multiple scales 

Lead author: Tim O’Higgins (UCC) 

The meta-ecosystem approach provides a useful and powerful theoretical and conceptual 

tool to understand feedbacks and impacts across multiple scales and the emergent properties 

that arise from spatial coupling of local ecosystems, such as global source–sink constraints, 

biodiversity–productivity patterns, stabilisation of ecosystem processes and indirect 

interactions at local or regional scales. The meta-ecosystem approach thereby has the 

potential to integrate the perspectives of community ecology, to provide novel fundamental 

insights into the dynamics and functioning of ecosystems from local to global scales, and to 

increase our ability to predict the consequences of drivers and pressures on biodiversity and 

the provision of ESS to human societies.  

“The problem of relating phenomena across scales is the central problem in biology and in all 

of science” (Levin, 1992) and problems of scale are particularly important when it comes to 

developing effective environmental management. There has been considerable recent 

attention paid to social-ecological scale mismatches and these may be observed where 

“human institutions do not map coherently on to the biogeophysical scale of a resource in 

space or time” (Cash et al., 2006). While the importance of incorporating scale considerations 

into environmental management has been recognised for many years (e.g., Cumming et al., 

2006; Henle et al., 2010; Veldkamp et al., 2011), it remains a major practical challenge 

particularly when it comes to consideration of ESS (O’Higgins et al., 2010; Jordan et al., 

2012).  O’Higgins et al., (2014a) introduced a technique, based on the DPSWR (Driver-

Pressure-State-Welfare-Response) for the identification of spatial scale mismatch. Figure 13 

introduces a simple classification of scale mismatches based on the work of Cumming et al. 

(2006) and using the DPSWR information categories. By taking the response as the scale 

frame, mismatches were classified relative to it, i.e., the spatial scale of an ecological 

problem (comprised of pressures and states) is either larger or smaller than the fixed scale of 

a specific response; they classified these characteristics as grain and extent mismatches, 

respectively.  

The AQUACROSS conceptual frame explicitly incorporates ESS within the DPSWR at the 

interface between State Change and Welfare.  Based on attempts to map ESS values in coastal 

and estuarine systems (O’Higgins et al., 2010; Jordan et al., 2012), O’Higgins et al. (in review) 

have developed a classification of ecosystem service scale and location relationships and 

applied it to two estuarine CS sites. They based their classification on Fisher et al. (2009) who 

identified three categories of spatial relationships between ecosystem service supply 

(Production, P) and demand (Benefit, B); in situ, where P and B are co-located (e.g., a localised 

crab or lobster pot fishery); omni-directional services where P occurs in a discrete location 

but B is diffuse (e.g., Carbon sequestration) and directional where the P is in one location but 

B occurs in another, (e.g., the flood protection service provided by mangroves). Fisher et al. 

(2009) also suggested the scale qualifiers, local, regional and global for spatial characteristics 

and recognised the binary distinction that P and B may occur in the same place (Pxy = Bxy), in 
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situ, or that production and benefits may occur in different places (Pxy ≠ Bxy): directional. They 

also recognised that supply might be spatially discrete but the benefits occur all around 

(omni-directional) implicitly recognising that P and B for some services exist on different 

scales. 

Figure 13: DPSWR elements and scale 

Source: O'Higgins et al., 2014a 

Legend: a) Illustration of DPSWR framework showing the trade-off between the drivers of 

environmental state change and the changes in welfare caused by environmental change. See 

text for description of the DPSWR elements. b) A classification of scale mismatch. Extent 

mismatches occur when the pressure and state change lie partially or entirely outside the 

spatial domain of the response; grain mismatches occur when the spatial scale of the 

pressures is at too small a scale to be effectively managed by a response mechanism. 

The typology below considers two distinct spatial characteristics for ecosystem service 

production (P) and delivery of benefits (B), those of location and scale, denoted with 

subscripts, XY and Z respectively. In this classification scheme spatial scale is explicitly 

included as a descriptor of supply and demand. In terms of spatial scale there are three 

possibilities, scales may be matched (Pz=Bz), or scales may differ (Pz>Bz or Pz<Bz). Figure 14 

summarises the six possible unique combinations of location and scale relations with a 

suggested names for each type of relationship.  

Combining the spatial mismatch classification along with the spatial typology of ESS, there 

are potential design management instruments and institutions at the appropriate spatial 

scales for the management of ESS.  

Temporal mismatches in scale can also occur, with policy objectives being set at different 

temporal scales than those of natural processes. Using a similar idea to those described 
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above, O’Higgins et al (2014b) also developed a classification of temporal scale phenomena 

including legacy and future effects as well as committed behaviours, which is summarised in 

Figure 15. 

Figure 14: Typology of ecosystem services based on the location and scale 

Source: O'Higgins et al., 2014a 

Legend: Proposed typology of ecosystem services based on the location (XY) and scale (z) of 

ecosystem service production (P, grey circles) and delivery of benefits (B, white squares) for 

each of the possible combinations of location and scale 
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Figure 15: Temporal scale effects 

Source: O´Higgins et al (2014b) 

Legend: a: t = 0 represents the time at which a decision is to be made, and t = T represents 

the planning horizon, so that the planning period covers the range 0 < t ≤ T. This figure 

adopts a similar approach to summarise the definition of the other class of endogenous 

constraints: Committed Behaviours showing causal relationships among a specific Driver 

activity (D), Pressure (P), and State (S) or State change (ΔS). Where relevant, the superscript 

denotes the affected ecosystem compartment, with M = marine system and N = other (non-

marine) ecosystem compartments. The subscript indicates the time at which the relationship 

is manifested relative to the time at which a decision is made (t = 0) and to the planning 

horizon (t = T). b: Schematic diagram of Legacy Effects and Committed Behaviours, showing 

Drivers in green, Pressures in blue, and State in red. 
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Combining the three analytical tools summarised above and testing them in the application of 

case studies in the AQUACROSS project, will facilitate and enable a standardised approach to 

consideration of scale within the project. 

Figure 16: Scale-related concepts on DPSWR cycle 

Source: O'Higgins et al., 2014a 

Illustration on how the concepts relating to scale described above map on the DPSWR cycle. 

By comparing Figure 16 above with Figure 12, which illustrates the location of uncertainties 

along the DPSWR path, it can be seen that qualitative analytical scaling tools can be used to 

inform assessment of uncertainties to frame various aspect of particular case studies. For 

example committed behaviours are defined as “collective norms and activities that are not 

socially or politically feasible to alter in the short to medium term” (O’Higgins et al., 2014b) 

and may be further categorised as (1) explicit social/political decisions that have been made 

prior to the planning period, effectively establishing a contract with agents such as firms 

whose actions have been based on these decisions, and (2) the methods for meeting 

demands for goods and services implicit in the operation of economic systems (O’Higgins et 

al., 2014b).  In terms of individual AQUACROSS case studies such committed behaviours 

might include long standing resource management policies which are unlikely to undergo 

major alterations within medium term time horizons. These include the Common Fisheries 

and Agricultural Policies which can inform the framing of scenarios, and consideration of 

uncertainty around likely future socio-economic development. 



 

139 Crosscutting issues 

Uncertainties in the future environmental forcing factors that will influence the functioning of 

the ecological system can also be reduced by explicit consideration of memory and future 

effects, which should be incorporated into modelled scenarios. 

The effectiveness of proposed management effort of EBM strategies maybe subject to, and 

therefore should also account for, mismatches between scales of ecological process and scale 

of effective governance.  While there are clear extent mismatches built into AQUACROSS case 

studies involving transboundary problems (for example in case studies 2 (Intercontinental 

Biosphere Reserve of the Mediterranean) and case study 4 (Transboundary Management of 

Invasive Species in Lough Erne), a systematic approach toward the analysis of scale across 

case studies may shed light on common challenges and solutions and the design of potential 

EBM response should also account for the difficulties of practical implementation of policies. 
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3   The Way Ahead 

Unlike other projects, AQUACROSS aims to continuously review and refine this Assessment 

Framework towards Deliverable 3.3 (Final Assessment Framework), an updated and proof-

tested output of the project, to be presented at the Final AQUACROSS Forum to be held in 

Berlin (Germany). For that purpose, the development of the AQUACROSS Assessment 

Framework you have just read through and, therefore, the investigation into the specific 

elements for assessment, is (i) mindful of the practical challenges to be faced in terms of 

applicability (e.g., linking policy and science in the three aquatic realms); (ii) makes the most 

out of existing knowledge to enhance current EBM practice; and (iii) ensures relevance. 

More specifically, the next task under this work package will work (towards the end of the 

project) on the update and upgrade this Assessment Framework based on feedback from 

applied work in other work packages and case studies (for which ad-hoc ‘cookbooks’ will be 

developed to account for specificities and provide guidance). Project partners will thus use 

insights from applied work to update and revise the AF based on findings and experiences 

from AQUACROSS – needless to say that this process of upgrading and updating will also 

factor in input from stakeholders and the SPBTT. 

Since the AF is a key output of AQUACROSS, special emphasis will be placed on the practical 

applicability of the framework in science, policy and business. In other words, significant 

effort will now be made to create a workable analytical framework that can be both conveyed 

and understood (i.e., hence using clear language and structure) as long as being flexible 

(incorporating varying end-user needs).  

It is important to stress upon the fact that the AQUACROSS concept and AF will be applied in 

case studies to test and refine its applicability, thus providing the basis for its integration in 

the design and implementation of EBM. For this purpose, the analysis of links between drivers 

and pressures will feed the analysis of causalities (between biodiversity and ecological 

functions and services), the modelling of social-ecological dynamics, and the development of 

EBM.  

This highlights the relevance of ulterior efforts in the project to shed further light on the link 

between the analysis of drivers and pressures (demand-side analysis) and the analysis of 

causal relationships between biodiversity, ecosystem functions, and ecosystem services 

(supply-side analysis, as above). This, of course, requires the tdesign, implementation, and 

adequate maintenance of a fully operational information system for the project, something 

that was considered from the onset. 

Building on the overaching framework developed in this document, different modelling 

approaches and analytical tools will be used to evaluate the projected changes of drivers and 

pressures, as well as the social-ecological outcomes of those shifts, and to design new policy 

responses (based on an ecosystem approach) – the main value of which should neither be 

novelty, nor even innovation, but rather meaningfulness (i.e., actual impacts in terms of 
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societal challenges identified around biodiversity consevration and ESS provision).  

As a result of the implementation of the AF in next stages of the project, one should be able 

to ascertain a number of issues: 

 (Overall) How to move away from purely descriptive approaches towards more analytical 

ones, so that measuring, informing or listing, are perceived just as a what they actually 

are: means to a critical end (understanding, explaining, assessing to improve decision-

making for enhanced levels of biodiversity and ESS delivery). 

 How the most relevant drivers (of ecosystem change) affect aquatic ecosystems. 

 How the demand for ecosystem services and abiotic outputs from freshwater, coastal and 

marine ecosystems can be met (in a sustainable way). 

 How knowledge on biodiversity loss, drivers and indicators can be adapted, downscaled, 

and made useful for specific applied assessments, in the project case studies and 

elsewhere (once the project findings have been effectively uptaken). 

 How the assessment of changes in the state of aquatic ecosystems can shed light on the 

connection between the analysis of drivers and pressures, and the ecological assessment 

of links between ecosystem functions, services and biodiversity.  

 How better cases and storylines could be built and on the basis of what evidence) for 

biodiversity conservation and enhancement.  

 How to underline the critical differences between causality and correlation, prediction and 

forecasting, statistical analysis and scientific knowledge and, in a more specific way, how 

to progress from predictive models towards better decision-support tools, among other 

things to analyse and not just measure uncertainty, a critical dimension of policy making. 

 How to ensure that current and future models and policy-making frameworks address 

ecosystem-based management. 
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